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PREFACEI
This paper was prepared under the Institute for Defense Analyses' Central Research

I Program. It is a derivation and expansion of some attrition equations incorporated into

IDA's NAVMOD model of naval combat (Reference [31).

1 he authors are grateful to Dr. Lowell Bruce Anderson, Dr. Ronald Enlow, Dr.
Arthur Fries, and Dr. Robert Gilmore for their review of this paper.I
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ABSTRACT

This paper examines a class of combat processes where one side's resources are

evenly distributed along a barrier and the other side attempts to penetrate that barrier.

Starting from a set of straightforward assumptions, the paper derives exact or approximate

expressions for the expected numbers of resources destroyed, the expected number of

shots fired at a target, and in some cases, the probability distribution of the number of shots

fired at a target. The derivations combine and extend several concepts used in previous

attrition models, including having resources situated on a barrier, letting each attacker

engage several targets, and the use of the Poisson approximation to the binomial when

there are several types of targets. Several different firing rules (attack protocols) are

considered. Some of the equations developed here have been used in the Institute for

Defense Analyses' NAVMOD naval model to model attrition when a task force or group of

ships crosses a hostile submarine barrier.
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INTRODUCTION

This paper examines a class of combat processes where one side's resources are

evenly distributed along a barrier and the other side attempts to penetrate that barrier.

Starting from a set of straightforward assumptions, the paper derives exact or approximate

expressions for the expected numbers of resources destroyed, the expected number of

shots fired at a target, and, in some cases, the probability distribution of the number of

shots fired at a target. The derivations combine and extend several concepts used in

previous attrition models [5, 6, 8, 9, 10]. Some of these concepts are 1) having resources

situated on a barrier, 2) letting each attacker engage several targets, and 3) the use of the

Poisson approximation to the binomial when there are several types of targets. Several

different attack protocols (firing rules) are considered.

Some of the equations developed here have been used in the NAVMOD naval

model [31 to model attrition when a task force or group of ships crosses a hostile submarine

barrier. However, the barrier could be composed of any type of resource (e.g., aircraft)

spaced evenly along a barrier line. Accordingly, in the rest of the. paper we shall speak of

"barrier elements" and "penetrators" with the understanding that these could possibly be

ships, submarines, aircraft or any appropriate types of resources. In the processes

examined here, there can be several types of penetrators but only one type of barrier

element. (Strictly speaking, there can be sevcral types of barrier elements present as long

as the effectiveness parameters considered are the same for all the types.)

Chapter I considers the cases where the barrier elements are the shooters and the

penetrators are the targets. In Chapter II, the penetrators are the shooters and the barrier

elements, the targets. The issue of combining two one-sided attrition processes into a3 process where attrition to both sides is computed is not addressed in this paper. Reference

[1] gives one method for doing this; Reference [71 gives some justifications for this

method. This paper is structured so that in Chapter I, Section G, which contains results,

can be read immediately after Section A, the statement of the problem, without loss of

continuity. Similarly, in Chapter II, Section E can be read after Section A without loss of

I



continuity. Appendices A and B provide proof details of the results presented in Chapters I

and II, respectively.

The following notation is used throughout the paper. If A and B are events, then

P(A) denotes the probability of the event A and AB denotes the intersection of the events A
and B. A random variable is denoted by a symbol with a tilde over it, a realized value of

such a random variable by the corresponding symbol without the tilde. Thus the random
variable R might assume a value h; its expectation is E(h) and for a given value h, one can
speak of the probability P(ih=h). The symbol "' should be read as a lower case "ell." For

any nonnegative real x, LxJ denotes the integer part of x, i.e., the greatest integer less than
or equal to x, and <x> denotes the fractional part of x, i.e., <x> = x - LxJ.

2
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I. PENETRATORS ARE TARGETS,

* BARRIER ELEMENTS ARE ATTACKERS

I

A. THE PROBLEM

I Suppose that there are n types of penetrators (n could equal 1) with Rj penetrators

of typej, for j= 1-...n. LetI n
R=Y R j

denote the total number of penetrators. There is one type of barrier element; there are B

barrier elements present. We consider five attrition processes, indexed by attack protocol

(a) through (e) in Assumption 5) below, that proceed according to the following

assumptions.

I ) Barrier elements are spaced evenly along a barrier of length L, i.e.,
the line of length L is divided into B equal segments and a barrier
element is positioned at the center of each segment.

2) At a given time, each penetrator picks a crossing point 3E along the
barrier line, according to a uniform distribution, and all penetrators
attempt to cross the barrier simultaneously.

3) The crossing points of different penetrators are mutually independent
random variables.

4) If the crossing point of a given penetrator of type j lies within distance
wj /2 of a given barrier element, that barrier element will detect the
penetrator with probability dj. Otherwise, that barrier element will
not detect the penetrator. Each barrier element detects the penetrators
that come within wj /2 of it independently of one another.

5) Of the penetrators it has detected, each barrier element chooses certain
ones to attack with certain numbers of shots (salvos), according to one
of the attack protocols described below. In protocols (b), (c), and (d),
the parameter H is that number of salvos available per barrier element.
(All barrier elements use the same attack protocol.)

(a) A barrier element fires exactly one salvo at each penetrator it
detects.

* I-1



II
(b) Of the penetrators it has detected, each barrier element chooses one

according to a uniform distribution and fires one salvo at it. The
barrier element performs this process exactly H times. The target
choices for successive firings are independent.

(c) If a barrier element detects m targets (penetrators), it fires LH/mJ
salvos at each target, then chooses according to a uniform distributionU
H-mrj H/mj of the m targets and fires one additional salvo at each.

(d) If the number of targets, m, that a barrier element detects does not I
exceed H, the shooter fires exactly one salvo at each target. If m >
H, the shooter chooses according to a uniform distribution H of the
m targets and fires one salvo at each.

(e) Of the targets a barrier element has detected, it chooses one target
according to a uniform distribution and fires exactly one salvo at it.
(This is the special case of protocols (b), (c), and (d) when H = 1. I
We consider it as a separate protocol because the formulas for the
desired quantities are considerably simpler.) 3

(6) Conditional on detection of that penetrator, the decisions of different barrier
elements to attack a given penetrator are independent events.

(7) A shot (salvo) fired at a penetrator of type j kills it with probability kj.
The effects of different shots (fired at the same penetrator) are independent. 3

We wish to compute the following quantities:

-The expected number of penetrators of type j killed. I(j = 1, .. .,.n)

- The expected number of shots (salvos) fired at a given penetrator.

- The probability distribution of the number of shots fired at a given
penetrator.

The probabilistic derivations of the equations assume that integer numbers of
combatants are present. Strictly speaking, therefore, B and all the Rj should be integers.
In the formulas which have a closed form, however, it probably does little harm to use
nonintegral values for B and the Rj, if the values are at least 1. (In a determinisitc combat

model, the iterative use of attrition equations can yield noninteger numbers of combatants,
so attrition formulas that can be evaluated for noninteger numbers of resources are
desirable.) Where a formula is expressed as an indicated sum with a limit of R or R-1,
interpolation between the results with LRi and LRJ + 1 is a reasonable procedure. At least
one of the Rj should be nonzero, and B should be nonzero.

1-2 !
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In some formulas, the number of possible shots per shooter H, which is used in

attack protocols (b), (c), and (d), is the limit of an indicated sum, and thus should be a

positive integer--but .,;asonable valies for H might frequently be such. (Throughout this

paper the terms engagement, shot, and salvu will be used synonymously.) Reliability of

Ii shots can be considered in determining the values of the kill probability kj. The barrier

length 1. should be strictly positive, and the "detectability width" wj should be less than or

I equal to L, for all j. (In the "homogeneous" case, i.e., n=l, w, d, and k are used instead

of wj, dj, and kj, respectively.)

5 Exact or approximate formulas for the three main quantities of interest have been

developed for each attack protocol, although in some cases, it has been necessary to specify

3i further restrictions on the parameter values, as discussed in Section D. There are two

reasons why some of the formulas are only approximations. The first arises from the use

of the Poisson approximation to the binomial. To develop algebraically tractable formulas,

we have assumed in some cases that certain binomial random variables are approximately

Poisson distributed. Section E explains where in the derivations these assumptions are

I made.

The second source of approximation is the "ignoring of edge effects." This paperIderives formulas for the desired quantities in terms of the probabilities of certain events that

involve a single penetrator and/or a single barrier element. The paper posits certain3expressions for these probabilities that are reasonable, and are exact in certain cases, but
might not be exact if a barrier element is located near the edge of the barrier, or if the3 crossing point of a penetrator is near the edge of the barrier (where "near" depends on the

values of certain parameters). These expressions, and the formulas developed from them,

thus ignore edge effects.I Section F discusses some of these expressions and the reasons

why they are not exact. Other such expressions are explained in relevant parts of the paper.

Without loss of continuity, the reader can skip to Section G, which presents the

formulas that have been developed for the three quantities of interest. Each theorem in

Section G states if edge effects have been ignored in its derivation, and states restrictions

on the parameters as necessary. The formulas are stated as approximate equalities if the

Poisson approximation to the binomial has been used in the derivation.

Exact expressions for the relevant probabilities would have to take the edge effects into account, and

might be more complicated than the expressions used here.

* 1-3
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B. DISCUSSION OF ASSUMPTIONS

The first assumption, the geometric placement of the barrier elements, is the feature I
that distinguishes this paper from certain other work on attrition equations. (Strictly
speaking, for the derivatioas in this chapter to hold, it is not necessary to assume that a 3
barrier element is always positioned at the center of its segment. It is merely necessary that
the barrier element can potentially detect and attack all type-j penetrators--and only those
type-j penetrators--that transit within distance wj/2 of the center point.) Another barrier
penetration model [2] assumes somewhat more independence between the barrier elements. 3

The second and third assumptions are a simplification of reality: a group of

penetrators might cross a barrier in some coordinated fashion, or sequentially. In the
NAVMOD model, some of the formulas developed here are used to model barrier
crossings, but provisions are made for the penetrating ships to cross along a "corridor

width" that may be less than the full physical barrier length L. The details appear in [3].
Note that the uniform distribution of the penetrators' crossing points implies that a

penetrator cannot take advantage of knowledge of the barrier elements' positions. In 3
particular, penetrators cannot discern or exploit gaps in the barrier coverage.

Throughout this chapter we will use the following terminology. If the crossing I
point x of a particular penetrator of type j, penetrator p, is within distance wj/2 of the
location of barrier element 3 (which can be thought of as the midpoint of the Oth interval of I
length L/B from one end of the barrier) we will use the phraseology "p is detectable by 13,"
or "p is vulnerable to 13", or "13 can potentially detect p." If 13 can potentially detect p, then

13 detects p ("13 actually detects p," "p is detected by 13") with probability dj. The

"detectability width" wj could be thought of as a sweepwidth against type-j penetrators

(especially if dj =1). It is possible, if the wj are large, that the detectability areas of
different barrier elements overlap, i.e., that a penetrator is vulnerable to more than one
barrier element. Frequently, however, it is reasonable to set the parameter wj to L/B for all
j. The interpretation of this is that e.ch barrier element is assigned its own "barrier cell,"

and can attack only those penetrators that come within its cell. We have tacitly assumed 3
that a barrier element is capable of attacking any penetrator it detects. Therefore, wj should

not be set so large that a barrier element detects penetrators that are too far away to attack.

The second part of assumption 4) can be stated more precisely as follows. Given
any specific barrier element 13 and penetrators (of whatever types) Pl, P2 ...... Pk that are 5
detectable by 13, let Di denote the event that 13 actually detects penetrator Pi. The second

1-4 3
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part of assumption 4) states that the Di form a set of mutually independent events. This

assumption is of key importance in the derivations of the formulas.

We note that in assumption 5), the choices of target(s) to be attacked do not depend

on the types of penetrators detected by a barrier element, but only on the total number of

penetrators detected. In general, deriving attrition formulas where the target choice is

dependent on target type is a difficult probabilistic problem. For a solution of one special

case of this, see Reference [11].

If the detectability widths for different barrier elements (the portion of the barrier

with wj/ 2 on either side of a barrier element) overlap (this could happen if wj or B is large),

it is possible that two or more barrier elements can detect the same penetrator. Assumption

6) merely states that those barrier elements do not coordinate their attacks. This is not

unreasonable if one assumes there is no communication between barrier elements (e.g.,

barrier submarines). Assumption 7) has been used in most of the IDA work on attrition

equations [5,9]; it implies that if a penetrator of type j receives exactly h shots, it will
survive with probability (1-kj)h. This is a realistic assumption in the case where a fired

shot is lethal if it hits the target, but has some probability (due, say to unreliability) that it

does not hit, and the reliabilities of different shots are independent. On the other hand, it

may be that multiple shots hitting a target have a cumulative effect. For example, there is

the situation where one hit does no damage at all to a target, but two hits destroy it. To
model a situation with this property, it is often desirable to know the probability

distribution of the number of shots fired at a target. In this paper, we derive this
probability distribution for some cases. Thus, in computing attrition, assumption 7) could

be relaxed and a function giving the probability a target is destroyed if h shots are fired at it

could be used instead. NAVMOD [3] has provisions for modeling situations where hits

have a cumulative effect.

We note finally that the case of multiple penetrator types--n > 1-- is essentially

intractable if the exact formulas are desired. In this paper we derive the exact formulas for

the case where n = 1 and approximations for the multiple penetrator type case. This will be

discussed more in Section E below.

C. RELATION TO PREVIOUS WORK

The attrition equations developed in this paper are part of a series of "binomial"

attrition models. Such models can be considered as discrete time analogs of Lanchester

attrition equations. Initial numbers of searchers and targets and certain effectiveness

1-5
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parameters are input. Attrition occurs over an interval of time, according to specified

assumptions concerning detection, attack, and kill. Formulas for the expected number of

targets killed (and, in some cases, other quantities of interest) are probabilistically derived U
from the assumptions. The initial work at IDA on binomial attrition processes appears in

Reference [5]. Reference [101 derives the equations for many such processes; Reference 3
[9] presents results for most of the important processes. Derivations of equations for

certain specific binomial attrition processes appear in [6], [11], [12], and [13]. 3
The main difference between this paper and the above references is the explicit

positioning of the resources along a barrier line. The previously developed binomial I
attrition models considered uncoordinated forces of attackers: different attackers were

mutually independent. Here, because of the barrier spacing, different attackers (barrier

elements) are not independent. (Different penetrators are independent.) To derive expected

kills here, we condition on the crossing point of a penetrator and then still must ensure that

certain random variables are conditionally independent given this crossing point. This line

of argument was unnecessary in previous work. We point out that attack protocol (a) (each

attacker shoots once at each target it detects) was trivial to treat when attackers were 3
uncoordinated. Introducing the barrier structure makes protocol (a) more interesting to

examine. 3
This paper also treats in an integrated fashion the issues of multiple shots per

shooter and multiple target types. Of the references discussed here, only Reference [6]

allowed attackers to have several shots: attack protocol (d) was used and only one type of

target (and one type of shooter) was considered. The attrition equation developed in [61

(which is also reported in [9]) does not have a closed form: it is expressed in terms of

cumulative binomial probabilities. The same is true of most of the equations developed in

the current paper for attack protocols (b), (c), and (d), where an attacker has more than one I
shot available.

Binomial attrition processes involving targets (and shooters) of more than one type 5
have been explored much more fully. If detection parameters are a function of target type,

the expected number of targets of type j killed can be rigorously derived, but the formula is 3
essentially intractable algebraically [5]. To circumvent this difficulty, the Poisson

approximation to the binomial has been used to develop approximate attrition equations that

have simpler forms [8]. In some cases, error bounds on the approximation accuracy of the

final attrition equation have been developed [8, 10]. (Kill parameters can, without i
difficulty, be functions of both shooter type and target type. Reference [121 examines the

1-6 1
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Iprocess where detection parameters are functions of shooter type but not target type. The

resulting attrition equation, first derived in [5], has a relatively simple closed form.)

I Two other models that consider combat processes similar to the ones treated in this

paper are "An Attrition Model for Penetration Processes" [2], and the attrition routines ofI the "Barrier Air Defense Model" [4, especially pp. E-43ff]. Reference [2] examines a

combat process in which penetrators attempt to get through a set of defenders, that can be£ considered as forming a barrier. Probability distributions-not just expected values-of a
wide variety of quantities are computed. The assumptions of [2] are somewhat different5 from those of this paper: penetrators attack one by one, in succession; the attack can result
in attrition to both penetrators and defenders, and each defender detects a penetrator

independently of other defenders. Reference [21 admits that there are situations where this

latter assumption is not realistic, particularly if the defenders are evenly spaced barrier

elements.

The Barrier Air Defense Model considers a group of evenly spaced penetrating

aircraft opposed by defending aircraft. Several combat processes are considered; in one,3the defending aircraft are also evenly spaced, in others, the defending aircraft are positioned
to maximize expected attrition to the penetrators. 1 A defender can detect only those

penetrators that come within the defender's "launch opportunity zone"; detected penetrators
can be attacked according to a number of protocols similar to those in Assumption 5 (of this

paper). The assumption of evenly spaced (rather than independent random) penetrators

distinguishes Reference [4] from the work reported here. For cases where penetrators tend

to cluster when crossing a hostile barrier, the assumption of independent random

penetrators provides a tractable way of examining the effects of such clustering. A
clustered crossing pattern is not the same as independent random penetrators, but the latter

case is tractable mathematically and is in some sense conservative: no coordination or
communication between different penetrators is assumed. The results can thus provide a5benchmark for evaluating the effectiveness for the penetrating side of any particular

crossing pattern.

*Reference [14] examines a penetration process that involves a single transiting ship

crossing a minefield. Each mine is placed along a barrier line according to a uniform

distribution; the locations of the mines are independent of one another. The crossing point

1 In cases where the barrier must be formed before the positions of the penetrators are known, even spacing
of barrier elements along the barrier line would seem to be the more appropriate assumption.

1-7
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of the penetrator is uniformly distributed along the barrier line and is independent of the I
positions of the mines. The probability that the transitor is killed is derived, and the

influence of edge effects is thoroughly examined (cf. Section F of this chapter).

D. AN INDEPENDENCE CONDITION 3
We have been able to derive formulas for certain of the desired quantities only if it

can be guaranteed that certain random variables are independent or conditionally 5
independent. In addition to the basic assumptions 1) through 7), certain constraints on the

parameters are sometimes necessary. To explain the reasons for this, let us examine how 3
one might go about deriving the formula for the expected number of penetrators of type j
killed. IThis quantity is the number of penetrators of type j multiplied by the probability that I
a specific penetrator of type j is killed by the barrier elements [12]. In symbols,

E(ARj) = Rj(1-P(S)),

where the random variable ARj is the number of penetrators of type j killed and S is the

event that a given penetrator (call it penetrator p) of type j survives the barrier. We thus

wish to compute P(S). Let the specific barrier elements be indexed by b, ranging from 1
through B. For each b, let Sb be the event that penetrator p survives barrier element b. 3
The intersection of the events Sb is S, but the individual Sb are clearly not independent: if

penetrator p survives barrier element 13, the chance is increased that p's crossing point was 5
not within the detectability area of 3, thus the crossing point is more likely to be in the

detectability area of some other barrier element (call it y), and thus the probability that p 5
has survived y decreases. The interesting question is whether the events Sb are

conditionally independent given the crossing point x of penetrator p. ,

Consider the case where the detectability widths of the barrier elements overlap
(i.e., wj >L/B), and where the attack protocol is (b), (c), (d), or (e), so that the number of

shots available per barrier element is limited. Suppose that penetrator p's given crossing
point x is such that p is vulnerable to several barrier elements (call them 1311 . 3
The probability that barrier element Pi fires at p depends, in part, on the number of other
penetrators barrier element Pi detects. In any realization of the process, the crossing points
of the other penetrators are fixed. If the penetrator survives barrier element 131, this might I
indicate that fewer sh its than average were fired at p by 131--which might have happened

because P I detected many penetrators and had to spread its fixed number of shots thinly. 5
This would imply that many penetrators crossed within the detectability area of 131, which

1-8 3
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I would indicate that the number of penetrators crossing within the detectability area of some
other barrier element, say 132, was less than average. Since p is vulnerable to 132, the3 chance of p receiving more shots from 132, hence being killed, would be increased. 1

The above argument merely indicates why it is not obvious that the events Sb are

conditionally independent given the crossing point x of penetrator p; it does not imply that

the Sb are not conditionally independent. Unfortunately, numerical examples have been3developed that show that the events Sb are indeed not necessarily conditionally independent

given x. In this case, P(S) must be found by integrating over the appropriate joint5probabilities of the specific crossing points of all penetrators, an involved calculation that

we have not attempted in this paper.

Under certain conditions, however, the Sb do form a set of conditionally
independent events. Specifically, with p, x, and Sb defined as above, the following two3 results hold. (Proofs are in Appendix A.)

Lemma 1. 1: If attack protocol (a) is used (each barrier element fires exactly one shot at3each penetrator it detects) then the Sb are conditionally independent given x.

Lemma 1.2: If penetrator p is of type j and wj < L/B, then the Sb are conditionally
independent given x. This is true whether or not wi< LIB for other target
types i.

3One reasonable scenario where the premises of Lemma 1.2 are met occurs when the

barrier line (of length L) is partitioned into B equal nonoverlapping "cells" and a barrier3 element is allowed to attack only those penetrators it detects whose crossing points lie
within its cell. Then, for all j, the parameter wj is the minimum of the "true effective sweep

3 width" and IB.

If protocol (a) is used or if wj < L/B, we will use the terminology "the

independence condition holds." The independence condition is used in the derivations of

the expected number of penetrators killed and the probability distribution of the number of

shots fired at a penetrator. The formulas for the expected number of shots fired at a

penetrator, however, are valid whether or not the independence condition holds.

3 1This argument is similiar in spirit, though not in detail, to the explanation of why targets do not die
independently of one another, given in Reference [5], p. 5.
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E. DERIVATION OF THE DESIRED QUANTITIES

This section explains the main arguments used in the derivation of the three desired U

quantities, presenting the formulas when attack protocol (b) is used. Proof details appear

in Appendix A. The homogeneous (n = 1) and heterogeneous (n > 1) cases are considered 3
separately, where appropriate. In the course of the derivation, we point out certain issues

of approximation, which are discussed more fully in Section F. 3
We start the derivation by considering one specific penetrator, penetrator p, which

is assumed to be of type j, and one specific barrier element 13 that can potentially detect p. 5
We then use the results of this situation to derive the overall quantities of interest.

1. One Penetrator, One Barrier Element 3
We assume that the crossing point x of penetrator p is such that barrier element 13

can potentially detect p--i.e., x is within wj/2 of the location of 13 (which is at the midpoint n
of the [3th interval of length L/B along the barrier line). We define the following events and

random variables: 3
D--13 actually detects p

At--The number of penetrators other than penetrator p (regardless of type), that j3 I
detects, is exactly t. (Defined for t=0,1,...,R-1.)

DA 1 --The intersection of events D and At, i.e., 13 detects p and exactly 1 other 5
penetrators.

h--random variable indicating the number of shots 3 fires at p.

Fh--The event that R=h, i.e., 13 fires exactly h shots at p. (Defined for I
h=0,1,...,H.)

K--13 kills p. 1
We compute P(K), E(R), and the probabilities P(Fh). These correspond to our

three desired quantities, but in the case where only one barrier element and one penetrator 3
are present. Later, we integrate these quantities into overall results. Before we derive
P(K), E(4), and the P(Fh) we derive their "component parts" P(Fh I DAL), P(K I Fh), and 3
P(DAt).

Because the choice of targets 13 attacks depends only on the number, not the types, 3
of penetrators detected, the conditional probabilities P(FhIDAt) are functions of h and t

only. If attack protocol (b) is used, from the statement of Assumption 5b) it is clear that, if 3
1-10 1
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S [detects p and t other targets, i.e., t+l targets in total, the number of shots target p

receives is binomially distributed with parameters H and 1/(t+l). In symbols,

1 P (F hID A ) = f H H [4 h ~ l H)

This is defined for h=O,... ,H and i=O, .. ,R-l, and in fact is sensible mathematically for

any nonnigative t. (Formulas for P(FhIDAt) for the other attack protocols appear and are

derived in Appendix A [Lemma 1.5].)

I Let a bar over any event denote its complement, so K is the event that 13 does not
kill p. From Assumption 7), it is clear that

P (K IFh) = (1-k 
/h

SO P(KIFh) = I -- (1-kj)h, for every h.

The probabilities P(DAt) are somewhat more interesting. Since penetrator p is

assumed to be detectable by 13, P(D) is simply dj. Consider some other penetrator, p',
which is of type i. In order to be detected by 3, penetrator p' must first be detectable by

I 13--that is, its crossing point must be within wi/2 on either side of the location of 13.
Ignoring edge effects, the probability of this is, by Assumption 2), 2(wi/2)/L, or wi/L.

Given that p' is detectable by 13, p' will actually be detected by 13 with probability di. Thus

P(penetrator p', of type i, is detected by 13) = diwifL.

The potential edge effects problems will be discussed in Section F, below. By Assumption

3), crossing points of different penetrators are independent, and by the second part ofU Assumption 4), penetrators detectable by barrier element 13 are actually detected by 13
independently of one another. Thus, if p1, P2,...,Pm are different penetrators, the events

1 (13 actually detects penetrator Pk)

for k=l,...,m form a mutually independent set. By this same reasoning, the event D (13
detects p) is independent of the event 13 detects Pk, for Pk *p. There are R - 1
penetrators other than penetrator p. Therefore, if there is only one type of penetrator, the3 number of penetrators other than penetrator p that barrier element 13 detects is binomially

distributed with parameters R-1 and wd/L. In symbols,

1
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IP(A~) = Rl (~j wi 34
andU

P(DA) dP(A) d r fL L ~ 9 1 d

for tO..R1

Now suppose that n > 1. (The following argument is identical to that given in
Reference [9].) Recall that the specific penetrator p under consideration is of type j. Not
including penetrator p, there are Rj - 1 penetrators of type j and Ri penetrators of type i, for

all i=l,...,n, i*j. Let the random variable ii denote the number of type-i penetrators, other

than penetrator p, detected by 3. It is clear from the preceding arguments that:

- For i~j, Ti is distributed binomially with parameters Ri and wi di /L. 3
- .is distributed binomially with parameters Rj -1 and wj dj /L.

J

- 1 2 ..... 9'n are a mutually independent set of random variables. 3
The sum n

1.'= I
i=l1

is the total number of penetrators other than penetrator p that J0 detects. The distribution of

" is a convolution of binomial distributions with different parameters, and the resulting

formula is algebraically intractable [5]. We therefore use the Poisson approximation to the
binomial and consider each T as being approximately Poisson distributed with mean

Riwidi/L, for i * j. Random variable i is approximately Poisson with mean (Rj-1)wjdj/L. 3
Since the sum of independent Poisson random variables is Poisson, 7 is approximately

distributed Poisson with mean 3
n

(xj (R -1)wjdj/L + X Ri wi di/L-

i~j

Then the probability P(At) = P(iT=t), i.e., the probability that barrier element 1 detects

exactly I targets other than penetrator p is approximately

I
1-12 !
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ocj e It!

3and
P(DA) - d e 'J1!

We now return to the derivation of P(K), E(h) , and P(Fh). The events FO

through FH form a partition, thus

P(K) = P(K IF ) P (F) =. P(KIFh) P(Fh),
h=O h=1

3 since if 3 fires zero shots at p, K will not occur. Similarly
H

E(h) = hP(Fh)"£ h= 1
The probability that penetrator p receives exactly h shots from barrier element 13 depends on

I the total number of targets 13 has detected. The events D, DA0 , DAl,...,DARI form a

partition, so
R-1

P(Fh) = P(FhIb)P(D) + t= P(FhIDA)P(DA)

3 We have assumed that no shot fired by a barrier element can reach a penetrator not detected

by that barrier element. Thus P(FoID) = 1 and P(FhID) = 0 for all h > 1. Therefore

H R-
P(K) = E P(KIF,) P(FhIDA)P(DA

h=i1 t t t

and H R-1

3 E(9i) = Y, hP(Fh IDAO P(DA)
h= L=O

i The appropriate formulas derived earlier can be substituted for the indicated
probabilities, and the algebra performed. The following points should be noted. First, it is

I generally easier to compute P(K) and E(h) by interchanging the order of summation and

summing on h first. The formulas for P(Fh) are, in general, complicated algebraically.

ISecond, many of the formulas do not reduce to a closed form and must be left as indicated

summations. Third, in the heterogeneous case (n>l) the approximate (Poisson) formulas3 for P(DAt) will be used. To compensate for the Poisson approximation to the binomial,

- 1-13
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indicated sums on . will be taken over all nonnegative values of t, not just up to R-1. I
(Note that the formulas for both P(FhIDAt) and the approximation to P(DAt) are well

defined for all nonnegative integer t, and Fubini's theorem justifies interchanging the order
of summation on h and i.)

In attack protocol (b), most of the formulas will not reduce to closed forms. Let us i
introduce the following alternative notation for P(DAt). In the homogeneous case (one
type of penetrator), we denote P(DAt) by ot., where 3

wdR-1--t

L 1

(0 =d (Rl(dL(1 --- t=0 .....R-1

If n > 1, we first define
n _ i

tj=(Rj-1) L +-1 Ri

and then the Poisson approximation to P(DAt) by 'VjP where

'ij =d e / t=0,1 ......

This assumes that the specific penetrator p under consideration is of type j. (A further i
approximation, which is somewhat easier computationally, is to replace aj by

n d. w.

i=1 L

in each Njt. Reference [8] does this; here we will leave the formulas in terms of the ctj.)

Using this notation, after algebraic simplification, the formulas for the quantities

P(K), E(h), and P(Fh), where attack protocol (b) is used, are as follows. In the homogen-

eous case
H

P(K) = d -t+1 3
E(R) wR [Ic L.R

1-14 3
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R-1 )H

P(F o) = 1-d + o0 +1 J'
and

h +I) 
h 

-
R-1 (H)Q._. --

11 1h= .... H.

In the heterogeneous (n > 1) case, assuming that the specific penetrator is of typej, the
following approximate fomulas obtain:

P(K) d- i .I P '
t=() it 1+1

E(h) HEh_- _ (1-e J),

Or.

P(F O ) = - dj + V,

and

P(Fh) = I h )H4

t=0

2. Combined Results Considering All Barrier Elements

The previous subsection considered one penetrator p. of type j, and one barrier

element P3 that could potentially detect p. Using the quantities P(K), E(h), and the P(Fh)

derived in Subsection E. 1, we now derive the overall quantities of interest. We again
consider one penetrator p, assumed to be of type j. The individual barrier elements are

indexed by b, b=l....B. We use the following notation, some of which was introduced in

Section D.

Sb--event that barrier element b does not kill penetrator p (i.e., p survives b).

B CS - - B) S, i.e., the event that p survives all the barrier elements.
b'=1

yb --random variable indicating the number of shots fired at p by barrier element b.
b

1-15



B
I Yb, i.e., the total number of shots fired at p.
b=l

x--point on the barrier at which penetrator p crosses, uniformly distributed on

10,L].

Cx --event thatR = x, defined for x E [0,L]. 3
Nj(x)--number of barrier elements that can potentially detect p, if p is of type j

and the crossing point of p is x. If n=l we will use the notation N(x). 3
Again, the quantities we wish to derive are:

- The expected number of penetrators of type j killed.

- The expected number of shots fired at a given penetrator.

- The probability distribution of the number of shots fired at a given penetrator.

In terms of the above notation, these desired quantities are given by Rj(1-P(S)),
E(Y) and P(Y=y) (for appropriate y), respectively. We derive each quantity in turn.

To find P(S) we first condition on the crossing point x. We shall speak of
probabilities conditional on C., even though P(Cx) for zero for every specific x. The 3
crossing point x is distributed uniformly on [0,L], thus

LI

P(S) = J P(SICx) 1 dx.

0 I
If the independence condition holds, as described in Section D, then the events Sb are

conditionally independent given x, so that 3
B

P(S ICx) = 11 P(SbI C), xE [0,L].

If x is not within the detectability area of barrier element b, the penetrator will certainly

survive barrier element b, so P(SblCx) = 1; if x is within the detectability area of b, then 3
by the results of the previous section, P(SblCx) = 1 - P(K), regardless of the specific

barrier element b involved. Thus
II P(S bC ) = (1-P(K)) J

b=1 bX

1-16 1
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The geometric spacing of the barrier elements gives rise to the following formula for

I Nj(x).

Lema 1.,3 Let 1. denote the integer part and f. the fractional part of L "inJ1 J

symbols I = w and f w LB .) Then, ignoring edge effects, Nj(x) equals

UI on a set of measure (1-fj)L, and equals lj + 1 on a set of measure fjL. Alternatively, if

3 the random variable Nj (R) is the number of barrier elements that can potentially detect

penetrator p, where k is the uniformly distributed crossing point of penetrator p, then
Ij w.p. 1-f.

Nj (x) =
- I +1 w.p. fj.

Proof: See Appendix A. Section F, below, discusses the effect of edge effects on

Nj(x).

Combining the above results, we obtain I. I.+1
PS) = (1-f)(l-P(K))J + fj(1-P(K)) ,

I which simplifies to
I.

P(S) = (I-P(K)) I (l-fj P(K)).

3 We note that P(K) is itself a function of the type j of penetrator p. The expected number of

penetrators of type j killed is

E(-Rj) = Rj (I-P(S))

Rj [ 1-(1-P(K))I (1-fj P(K))].

The computation of E(y) proceeds in a similar manner. We again consider a

I specific penetrator p, of type j. Conditioning on the crossing point x of p, we obtain

IE(Y) f E(y IC I dx.0 x

I
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For each x, I
B

E( I Cx)=I E(Y'bICx).

If x is such that barrier element b cannot potentially detect p, then b with certainty fires zero

shots at p. If b can potentially detect p, then by the results of Subsection 1, the expected

number of shots b fires at p is the quantity denoted by E(h). Therefore

E(yIC') = Nj(x) E().

This is true whether or not the independence condition holds. Integrating over x and 3
recalling the formula for Nj(x), we obtain

E(y) = (1-fj) IjE(h) + fj(Ij+l)E(h). I
Noting that I + f =-B we can simplify this to

wj + Efh =I

E(y) I E ")LL

This formula makes sense in that the average number of barrier elements that can potentially I
detect p is the average value of NO), or w.B!

(1-f.) I. + f.(I+ ) = I. + f.- w B

JJ JJ J i L
and each barrier element that can potentially detect p fires an average of E(f) shots at p.

To compute the probability distribution of Y, we must assume that the premises of

the independence condition hold, i.e., attack protocol (a) is used or wj < L/B. If protocol !

(a) is used, each barrier element fires exactly one shot at each penetrator it detects. We

have made the tacit assumption that detections of a given penetrator by different barrier 5
elements are conditionally independent given the crossing point x of that penetrator. (They
are clearly not independent overall.) Under protocol (a), then, if penetrator p crosses at x,

the number of shots fired at p is binomially distributed with parameters Nj(x) and dj. That

P(i=ysCx) =N.(x) d- N (x)-y 
l
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3 for y = 0,1,...,Nj(x). Integrating over x, we obtain, after extensive algebra

UI fIjd -Y + f(1.-d) (Ii +i)J 0y(Ij + I - y) y0...I

3 P(Y=Y) = i y=j +1

0 for all other y.

If wj < L/B, then by Lemma 1.3, Nj(x) is either 0 or 1, and penetrator p is never3vulnerable to more than one barrier element. If Nj(x) = 0, then no barrier element can
potentially detect p, and y is zero with certainty. If Nj(x) = 1, then one barrier element,

--3 call it 0, can potentially detect p, and y has the same distribution as Eh, which was derived

in Section E. 1. If wj < L/B, fj =wj B/L, and Nj(x) is zero with probability 1 - fj. Thus

P(=--O) = (1-f) 1 + f. P(FO)

J
~w.B 3 a = 1 L (-P(F))

I and

P(5Y=y) = (1-f.)- 0 + f.P(Fy)
3 w.B

J P(F) , y= 1,...,H.

It can easily be verified that these formulas are also valid when wj = L/B, i.e., Ij = 1 and

I- fj=0.

F. EDGE EFFECTS

i Edge effects can affect the accuracy of the formulas for the three quantities of
interest (the expected number of penetrators killed,the expected number of shots fired at a3 penetrator, and the probability distribution of shots fired at a penetrator) if some barrier
elements are located less than wjI2 away from the end of the barrier, for some penetrator

i types j. In this case, the "detectability width"--the interval of length wj centered on the
location of the barrier element--overlaps the area beyond the end of the barrier, where no
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penetrators cross. In terms of the symbols defined in the preceding section, this has two

major consequences: 3
1. The true value of Nj(x)--the number of barrier elements that can potentially

detect a penetrator of type j crossing at point x--is lower than the formula given
previously. See the proof of Lemma 1.3 in Appendix A for more discussion of
Nj (x).

2. For barrier elements b near (i.e., less than wj/2 away from) the edge of the
barrier, the probability that a given penetrator is vulnerable to barrier element b I
is not wj/L but equals I/L times (wj/2 plus the distance of b from the barrier

edge), a smaller quantity. This changes the probabilities P(At) and P(DAt)

used in computing P(K), E(E), and P(E=h).

It is not immediately obvious how these two effects affect the accuracy of the m

formulas for the overall quantities E(AR), E(y), and P(y=y). However, the problem of 3
edge effects may not be exceedingly important. If barrier elements are repositioned so that

no element's detectability area extends beyond the ends of the barrier, the values of both

Nj(x) and P(At) will increase, and the errors in these two quantities might compensate for

each other. And if the independence condition holds, edge effects are often automatically

eliminated, as described below.

By Assumption 1), if there are B barrier elements, the barrier line is divided into B

equal segments and a barrier element is positioned at the midpoint of each segment. For a

barrier of length L, if one endpoint is labeled with the coordinate value 0, then the position I
of barrier element b is

L 1

for b=l, . .. B.

In particular, barrier elements 1 and B are positioned at L/2B and L(1-1/2B),

respectively. Recall from Section D that the events Sb must be conditionally independent

given the crossing point R of a penetrator if the formulas for and E(Aki) and P(y=y) are to

be valid. (Here, "valid" means that a formula is correct, possibly subject to Poisson

approximation or edge effects.) This independence condition will hold if either

(a) Attack protocol (a) is used (a barrier element fires exactly one shot at I
each penetrator it detects)

or £
(b) wj<_L/B for the particular penetrator type j considered,
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or both. As stated earlier, frequently wj will be less than or equal to L/B for all j,

specifically in the case where each barrier element is not allowed to attack penetrators
outside the barrier element's "cell" of length L/b. Therefore the formulas for E(ARj ), E(y)

3 and P(y=y) are valid for all j. But also in this case, no barrier element is less than
wj/2 away from the barrier edge, for any j, and thus edge effects are not a problem either.

3 The issue of what happens when wj LfB for some but not all j is more
complicated. Consider penetrators of type j where wj<_L/B. The independence condition

3 does hold, and, except for edge effects, the formulas for E(A'K), E( ) and P( =y) are
J

valid. We conjecture, however, that they are not subject to edge effects if and only if attack
protocol (a) is used. The problem is that (in the derivation presented in this paper) for other
attack protocols we must condition on the number of other penetrators a barrier element

Sdetects--and the appropriate probabilities of detection will be subject to edge effects.

Less holds true for penetrators of those types j for which wj>L/B. If attack3protocol (a) is used the independence condition holds, and the formulas for E(ARj), EG),

and P(y=y) are valid but subject to edge effects. If an attack protocol other than (a) is used,3 the formulas for E(AR) and P(3=y) are not valid, and the formula for E(3) is subject to

edge effects.

3Edge effects will become more and more of a problem the greater the ratios
wj/(L/B) are. For the distance of barrier element b from the "left-hand" barrier edge (point

3 0) is

-(b - -
B 2

3 and this will be less than wj/2 away from this edge if

2b < 1 + -

Thus the greater the ratio wj/(L/B), the more barrier elements b satisfy this inequality andIe thus have their detectability widths overlap the area beyond the left-hand barrier edge.

Similar arguments apply to the right-hand barrier edge (point L).
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G. THE RESULTS

This section presents the formulas for the three main quantities of interest--the I
expected number of penetrators killed, the expected number of shots fired at a given

penetrator, and the probability distribution of the number of shots fired at a given
penetrator. Results are given for the five attack protocols in both homogeneous (n=l) and
heterogeneous (n>l) cases. Results for which we have not been able to find a closed form
are expressed in terms of cumulative binomial or Poisson probabilities when possible. The
methods of derivation of these formulas have been presented in Section E, above; proof

details appear in Appendix A.

Note that if H is set equal to 1 in the formulas for attack protocols (b), (c), or (d) 3
(and the appropriate algebraic s. -plifications are performed), the corresponding formula
for attack protocol (e) results. Also, if H is extremely large, the formulas for protocol (d)

reduce to the corresponding formulas for protocol (a). The descriptions of the attack I
protocols imply that the above results should hold; that they do is an independent check on
the accuracy of the formulas. I

1. Notation 3
This section briefly reviews some of the notation used in the formulas. The

quantities for which formulas are presented are as follows: 3
E(Akj )--expected number of penetrators of type j killed. (In the homogeneous

case, simply E(AR).)

E(y)--expected number of shots fired at a specific penetrator. (In the hetero-
geneous case, the penetrator is assumed to be of some specific type j.)

P(57=y)--the probability that exactly y shots are fired at a specific penetrator I
(of type j).

The following parameters are defined in the assumptions in Section A: L, wj, dj, I
H, kj. In the homogeneous case, w, d, and k are used instead of wj, dj, and kj,

respectively. There are n types of penetrators, Rj penetrators of type j, R penetrators in I
total (R = Y Rj), and B barrier elements.

The probabilities that a given barrier element detects a given detectable penetrator
and exactly t other penetrators (the P(DAt)) appear in some of the expressions that do not
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I have closed forms. For conciseness, we will use the notation cot and Ajt for them. In the

homogeneous case we set

=d tlRl L L- - t t=O,..., R-1.

3 We will often denote the quantity (wdiL) by p. In the heterogeneous case we first define,

for each j=l,...n,

d. w. n d. w.
-= (R-) + Ri--''

i=1I ig~j

and then setI -c. .

Nf. = d. i=O, 1, 2,...

I The following notation will be used for binomial and Poisson probabilities. (In this

paragraph only, n is any nonnegative integer and p is any real number between zero and

one.) We define

b(m;n,p) = p P (n-m, m=0 .... n

0 for m5-1I m

E(m;n,p) = b(t;n, p) for m=O,..., n
t=0{ for m.>n

-~m

nd p(m;g)= e 1t /m!

and0 for m-I

(m; (m; it) for m=O, 1, 2! t=O

I
I

I



Finally we will use the quantities Ij and fj defined (in the heterogeneous case) forI

j=1,...,n by

wPB
J Lj

In the homogeneous case we use the analogous quantities Iand f.3

2. The Expected Number of' Penetrators Killed

a. Homogeneous Case

TheoemL .1. Suppose that n=1 and attack protocol (a) is used. Then, 3
ignoring edge effects,

E(AR) = R [l-(1-kd)' (l-fkd)]

Tie b heorems 1.1b, c. d. and e. Suppose that n=1 and w LB. E(ATR) is 3

E(AR) = Rj 1-(1-P(K))I (l-fP(K))1

where P(K) is defined for the specific attack protocol used, as indicated below. (Note that

1=0 or 1, and if 1=1, f=-O.)3

- Attack protocol (b)R 
-H

- Attack protocol (c) Define U min(H-l, R-1), and let
U

A (t(k [I(I-<->k) .I

1-243



I Then if H R, P(K) = d-A, and if H<R-1

P(K) - L - A + dB(H-1;R-1, p) - wkLB(H;R p),

where 
p-wd 

.

- Attack protocol (d) Let p=wd/L. Then if H>R, P(K) = kd, and if H<_R-1,

P(K) = kdB(H-1;R-1, p) + kwL (1-B(H;R, p)).

S- Attack protocol (e)

kL R
P(K) - k[1-(1- ].IwR L

3 b. Heterogeneous Case

Theorem 1.2a. Suppose that n>l and that attack protocol (a) is used. Then,

3ignoring edge effects,
I.

E(ARj) = Rj [1-(1-k d) J (1-f kjd.)].

Theorems 1.2b. c. d. and e. Suppose that n>1 and wi<L/B for all

i i=l,...,n. Then E(ARj) forj=l,...,n, is approximately given by
I.

E(A-Rj) =- R. [1-(1-P(K))' (1-fjP(K))]

3 where P(K) is defined for the specific attack protocol used, as indicated below. (Note that

I.= or 1, and if I =1, f.=O.)

Attack protocol (b)

k. 
H

P (K) = di +=0

Attack protocol (c) Define

3 -[ H
Nk = ( (-k) t+(1-_< H >k.) .

t=o j t+1 J
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Then if aj>O m
Hk.d. Hk.d.

P(K) J ' - A + djP(H-1; a.) i. J P(H; a.)

J J
and if atj--OP()-d[-1k)H.m

(It is assumed that H is a positive integer.)

- Attack protocol (d)
( k.d.H

k d.P(H-1; aj) + Ij.. (1-P(H; ) if x.>O

k.d. if a.=O

- Attack protocol (e)

a (1-e J) if a.>0P(K)- -cx J

k.d. if a-.=O.

3. The Expected Number of Shots Fired at a Given Penetrator 3
In this subsection, we consider a specific penetrator, which we call penetrator p. In

the heterogeneous case, j denotes p's type. The random variable Y is the expected number 3
of shots fired at penetrator p (summed over all barrier elements). Here we present

formulas for E(Y); in subsection 4, we present formulas for P(3y=y), for appropriate y. 3
a. Homogeneous Case 3
Theorems 1.3a. b. c. d. and e. Suppose that n=l. Then, ignoring edge

effects, if attack protocol (a), (b), (c), (d), or (e) is used, as indicated below,E(y) is given 3
by the following formulas:

- Attack protocol (a) 3
E(y) WB wd

L L

I
1-26 3
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U - Attack protocol (b)

E(y) = B I -c)

- Attack protocol (c)

3E(y) = H

- Attack protocol (d)

If H R, E(y) L , as in (a).

If H<R-l, E(y) - WB[dB(H-1; R-1, p) +-R(1-B(H; R, p))],
L wR£ where p=wd/L

- Attack protocol (e)
E(-) = B _(-1 -)R]

Note that attack protocols (b) and (c) have the same formula. (See Appendix A for more on3this.) If H=I, it can be verified that the formula in (d) (and of course those in (b) and (c))

reduces to that in (e).

* b. Heterogeneous Case

3 Theorem 1.4a. Suppose that n>l and attack protocol (a) is used. Then,
ignoring edge effects,

E(y-) = wBdj
L

Theorems 1.4b. c. d. and e. Suppose that n>l. Then, ignoring edge
effects, if attack protocol (b), (c), (d), or (e) is used, as indicated below, E() is

approximately given by the following formulas.

- Attack protocol (b)

I L (l-e-) if aj>0

I BHdIL if aj =0.
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- Attack protocol (c)

wj BHdj (le-ifj) >0

E(y-)

{ wj BHdj/L if aj --0.

as in (b).

- Attack protocol (d)

w.B Hd.IJ [diP(H-1; a.) + H- -( 1-P(H; a.)) ] if a.>O

dL i i f =J

JJ

- Attack protocol (e)Iw Bd/if( 
=0

i wj -O
---)L a (1 -e ) if a >0

Bw.BdiL if f.=0
J J J

4. The Probability Distribution of the Number of Shots Fired at a Given
Penetrator
a. Attack Protocol (a)I

Theorem 1.6a. Suppose that n>1 and attack protocol (a) is used. Then,
ignoring edge effects and assuming that the given penetrator is of type j,_I

I i) djY (l-d Ij-y  [1-fj+ fj(1-d?) (Ij+l) Y= '..

P Ij +11

fj dj ,y=Ij + 1.

subject to edge effects, the formulas for the probabilities P(Y=y) are as given in Theorem
1.6a, but substituting d, I, and f for dj, Ij, and fj respectively.
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b. Attack Protocols (b), (c), (d), (e)

Before presenting the results for P(Y=y) for these cases, we relate the P(Y=y) to the
probabilities P(Fh), where Fh is the event that a specific penetrator (penetrator p) receives

exactly h shots from a specific barrier element P that can potentially detect p. The random

variables

hb=number of shots fired at penetrator p by barrier element b

for b=l,..., B are in general not independent, and not even conditionally independent given
the crossing point x of p. To avoid problems with this, we assume that wi<_L/B for all

penetrator types i=l,..., n, so that penetrator p is detectable by at most one barrier element.

The following lemma, proved in Appendix A, is valid in both the homogeneous and
heterogeneous cases; in the former case, merely suppress the shibscripts i and j. As before,

j denotes the type of the specific penetrator p under consideration. For protocols (a) and

(e), consider H as 1.

Lemma TA: Suppose wi<L/B for all i. Then, for all attack protocols,

-If w <L/B

P(7=O) = 1-f. + fJ P(FO)

P(57=y) = fj P(Fy), y= ... ,H

- Ifw =L/B

P(Sr=y) = P(Fy) y=O,...,H.

Recall that Ij and fj are defined as the integer and fractional parts, respectively, of
wjB/L. If wj<L/B, then Ij=O and fj=wjB/L. If wj=L/B, then formally Ij=l and fj--O but

letting Ij=O and fj=l in the first set of formulas yields the second set of formulas.

Accordingly, for the remainder of this section only, we redefine, for j= 1,...,n,

w= B if w. </B{. 1
1 if w =L/B.

In the homogeneous case, we define f by the above formulas, suppressing the subscript j.
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Utilizing derived expressions for the P(Fy), we can state the following theorems for I
the homogeneous and heterogeneous cases, respectively.

Theorems 1.5b. c. d. and e. Suppose n=l and w_<L/B. Then the random

variable has the probability distribution

P(Y=0) = 1 - f + fP(F 0 )

P(Y=y) = fP(Fy), y=l,..., H, 3
where the P(Fy) are defined separately for attack protocols (b), (c), (d), and (e), as

indicated below: 3
- Attack protocol (b).

P(F0 ) =-d+ 
I

R-I0= 1

P(Fy) = )C y t y- t- y y=L.... H
1=0

- Attack protocol (c). Let [xJ + denote the positive part of x, i.e., I
+ Jx if x>0!

xi = 0 if x<0,

and define p=wd/L. Then 3
HL

P(F0 ) = 1-d+d(1-B(H-1;R-,p))----- (1-B(H; R, p)).

(Note that if H R, this formula becomes 1-d, which is appropriate considering the

meaning of H, R, and FO.)

P(F1 ) = 2d(B(H-1; R-1, p) -B([21; R-1, p)) 3
- wR(B(H; Rp)-(JR'P)) I

+-ILL(I-B(H ; R, p) 5wR
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I and if H_>2, then for y=2,....H

P(Fy) = (y+i)d[B( IyJ-;R-1,p) - -( -1; R-1,p)

3 H [B( R, p) - 1( ;R,p)I1

wR _

i + :B [By ;R,p) - B( ;R, p) +

y- (y-1) d I B -1 ; R-1, p) - B( y R-1, p )+

I
Attack protocol (d). Let p=wd/L. Then

P(FO) = I - P(F 1)

*where
HL

P(F 1) = d 1 (H-1; R-1, p) + H-- (1-B(H; R, p)).

P(Fy) = 0, y>2.

5 Note that if H-R, P(F1) becomes d, which yields the same result as protocol (a) and is

consistent with the definitions of H, R, and F1.

I - Attack protocol (e). Again, let p=wd/L. Then

where P(FO) = 1-P(F1),

Ip(F1 ) _L (Il_ (l_p) R )

wR

P(Fy) = 0, y>2.

3 It can be verified that if H=I, tile formulas for P(Fo) and P(F1) in attack protocols (b), (c),

and (d) reduce to those in protocol (e).

i

I
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Theorems 1.6b. c. d. and e. Suppose that n>l and wi<L/B for i=l,...,n.

If the specific penetrator p under consideration is of type j, then the random variable y has 3
the distribution P(,=O) = 1-f.+f. P(F) U

J J 0

P(3=y) = fjP(Fy), y=l,...,H, I
where the P(Fy) are approximately given by the expressions below, defined separately for 3
attack protocols (b), (c), (d), and (e).

- Attack protocol (b) 5
P(F O)  -dj + ) H

P (FY) ( 'IH) (_j_) y ("_,-'H-Y y= 1"H.

t=0 Y +l +1y...

- Attack protocol (c). Let [x] + denote the positive part of x, as explained in Theorem 1.5c. 3
Then if oaj >0 I

Hd.
P(F O) 1-d.+d. [1-P(H-1;a.) ] -- (H;.)

0 1 
a .i

P(F 1) - 2dj[P(H-1;()x 2_ -1;ct.)]

Hd. H
i P(H1 j)

JHd.U
+

I
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U and if H2 then for y=2,...,H

3P(Fy) (y+1)d i [P{H -1;cc.) P +P{TIj-;a) 1 J

Hd. H H+

a..)

(y13 - i [ P(1 _]_;a - (Il-~

If aj=0O, then P(Fo)=l-dj, P(FH)=dj, and P(Fy)=O for all other values of y.

- Attack protocol (d)

whereP(FQ) 
= I- P(FI),

3j d~P(H-1; a.) + -' (-P(H; aj) if a>

P(F1 ) aJ if a1j =0.

P(Fy) =0, y 2.

I - Attack protocol (e)

3 -5 1 ea if aj>0
P(F0 ) a.

I-dj if a -

U P(F1 ) {Ile ifj>3 if _-=0

IP(F y) =0, Y2
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II. BARRIER ELEMENTS ARE TARGETS,
PENETRATORS ARE ATTACKERS

We now examine the attrition to barrier elements during the barrier crossing
process. The notation is similar (and sometimes identical) to that of Chapter I. We still
speak of barrier elements and penetrators. In this chapter, however, the terms "barrier
element" and "target" will be used synonymously, and the terms "penetrator", "attacker",
and "shooter" will be used synonymously. The statement of the problem in Section A,
below, is almost identical to the corresponding statement in Chapter I, but the penetrators
and barrier elements have reversed shooter and target roles. Some of the implications of

this are discussed in Section B, below.

A. THE PROBLEM

Suppose that there are n types of penetrators (n could equal 1) with Rj penetrators

oftypej. Let

n

RI j

denote the total number of penetrators. There is one type of barrier element; there are B
barrier elements present. We consider five attrition processes, indexed by attack protocols

(a) through (e) in Assumption 5) below, that proceed according to the following

assumptions.
1) Barrier elements are spaced evenly along a barrier of length L, i.e., the line of length L

is divided into B equal segments and a barrier element is positioned at the center of each
segment.

2) At a given time, each penetrator picks a crossing point x somewhere along the barrier
line, according to a uniform distribution, and all penetrators attempt to cross the barrier
simultaneously.

3) The crossing points of different penetrators are mutually independent random variables.

4) If the crossing point of a given penetrator of type j lies within distance wj/2 of a given
barrier element, that penetrator will detect the barrier element with probability dj.
Otherwise, that penetrator will not detect that barrier element. Each penetrator detects
the barrier elements that lie within wj/2 of the penetrator's crossing point independently
of one another.

II-
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5) Of the barrier elements it has detected, each penetrator chooses certain ones to attack I
with certain numbers of shots (salvos), according to one of the attack protocols
described below. In protocols (b), (c), and (d), the parameter Hj is the number of
salvos available per penetrator of type j. (All penetrators use the same protocol.)

(a) A penetrator fires exactly one salvo at each barrier element it detects.

(b) Of the barrier elements it has detected, each penetrator chooses one according to a 3
uniform distribution and fires one salvo at it. The penetrator performs this process
exactly Hj times. The target choices for successive firings are independent.

(c) If a penetrator detects m targets (barrier elements) it fires [-m salvos at each I
target, then chooses according to a uniform distribution H- L J n of the m

targets and fires one additional salvo at each. L

(d) If the number of targets, m, that a penetrator detects does not exceed Hj, the
shooter fires exactly one salvo at each target. If m > Hj, the shooter picks
(randomly and uniformly) Hj of the m targets and fires one salvo at each.

(e) Of the targets it has detected, a penetrator chooses one target according to a uniform
distribution and fires exactly one salvo at it. (This is the special case of protocols *
(b), (c), and (d) when Hj = 1.)

6) Conditional on detection of that barrier element, the decisions of different penetrators to
attack a given barrier element are independent. I

7) A shot (salvo) fired by a penetrator of type j at a barrier element kills the barrier element
with probability kj. The effects of different shots (fired at the same barrier element) are
independent.

We wish to compute the following quantities:

- The expected number of barrier elements killed.

- The expected number of shots (salvos) fired at a given barrier element. 3
- The probability distribution of the number of shots fired at a given barrier element.

Exact or approximate formulas for the first two of these quantities have been 3
developed for each attack protocol. General formulas for the probability distribution of the
number of shots fired at a given barrier element have been derived only for attack protocols 3
(a), (d), and (e). As in Chapter I, we have sometimes ignored edge effects when deriving

these formulas. Throughout this chapter and Appendix B, we indicate the derivation steps

and resultant expressions where edge effects have been ignored. Section D discusses some
of the consequences of ignoring edge effects.

11-2 3
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Without loss of continuity, the reader can skip to Section E, which presents the3 formulas that have been developed for the three quantities of interest.

B. COMPARISON WITH CHAPTER I

I The notation for the problem statement has been chosen to reflect the comple-
mentary nature of the combat processes examined in the two chapters. The parameters n,3 Rj, R, B, and L denote exactly the same quantities in Chapter II as in Chapter I, and the
same restrictions noted in Chapter I, Section B apply to them. The parameters wj, dj, Hj,3 and kj denote in Chapter II quantities similar to the corresponding ones of Chapter I, but

they apply to penetrators rather than barrier elements.

3 In this paper, penetrators operate (mutually) independently of each other, but barrier
elements are positioned in a fixed pattern (evenly spaced along a line). There can be

several types of penetrators but just one type of barrier element. In the current chapter, the

penetrators are the shooters, so different shooters operate independently. This makes it

easier than in Chapter I to derive the expected number of targets killed and the expected

number of shots fired at a given target. No special independence condition is necessary.
Since there is only one target type there is no need to use the Poisson approximation to the3 binomial to obtain tractable formulas for the number of targets a shooter detects. (This

approximation is used in computing the probability distribution of the number of shots3fired at a target in the case of heterogenous shooters.) It is relatively easy to deal with

multiple shooter types. Even so, the similarity of many of the final formulas to the3 corresponding ones in Chapter I is striking.

We use the words "detectability," "vulnerability," et al., in a manner similar to
Chapter I. A penetrator's "detectability width" or "detectability area" is the line of length wj

(j is the penetrator type) centered on the crossing point R of that penetrator (R is a random

variable). Any barrier element that lies within the detectability width of a given penetrator

(in a certain realization of the process) is said to be detectable by that penetrator or
vulnerab'e to that penetrator, or we say that that penetrator can potentially detect such a
barrier element. If penetrator p can potentially detect barrier element 0, p actually detects
with probability dj.

3 C. DERIVATION OF THE DESIRED QUANTITIES

This section presents the probabilistic arguments used to derive formulas for the

three basic quantities of interest: the expected number of barrier elements killed, the

1 11-3
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expected number of shots fired at a given barrier element, and (where possible) the I
probability distribution of the number of shots fired at a given barrier element. The

algebraic evaluation of the final formulas is presented in Appendix B; the formulas are I
presen (-d as heorems 4- Section E, below.

The derivation proceeds in two parts. Subsection 1 considers one specific target U
(barrier element 13) and one specific shooter (penetrator p, assumed to be of some type j).

Subsection 2 integrates the results of Subsection 1 into formulas for the overall quantities 3
of interest.

1. One Penetrator, One Barrier Element I
Consider one specific barrier element 13, and one specific penetrator p. We assume

that p is of type j. There is only one type of barrier element, and we are tacitly assuming

that the results here do not depend on the specific barrier element considered. This is true

in the absence of edge effects. For this section we ignore edge effects; some of the I
complications they can cause are discussed in Section D. Unlike Chapter I, we do not
assume that 13 is detectable by p. Instead we explicitly consider the probability of 3
vulnerability.

We define the following events: 3
V--p can potentially detect 13, i.e., p's crossing point is within wj/2 of the location

of j3.

Wm--The total number of barrier elements that p can potentially detect is exactly m.
(Defined for m=O, 1,...,B.) 3

VWm--The intersection of V and Wm, i.e., p can potentially detect 13 and m-I
other barrier elements.

D--p actually detects 3. I

At--p detects exactly t targets other than target 13. 3
DAt--The intersection of D and At, i.e., p detects target 13 and exactly i other

targets, for a total of t+l. (Defined for i=0,...,B-1.) 3
Fh--p fires exactly h shots at 13. (Defined for h=0 ....Hj.)

K--p kills 13. 5

I
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U We also let the random variable 1 denote the number of shots p fires at 03, so

P(Fh) = P(E=h).

The quantities we derive here are P(K), E(ri), and the P(Fh) for h=O,...,H i . These

3 will be used as inputs to Subsection 2.

By Assumption 5), target 03 will receive no more than Hj shots from shooter p (in

attack protocols (a) and (e), Hj=l for all j) so by Assumption 7)

H.

P(K) = E (1-[1-kJI') P(Fh)
h=O

H.
I (1-[1-kjjh)P(Fh) -

h= 1I Similarly

H.

Ei') = I hP(F).
h=l

3 In attack protocols (b), (c), (d), and (e), the number of shots p fires at j3 depends on the

total number of targets p has detected, or equivalently, the number i of targets other than 13
that p has detected. Assumption 5) of Chapter II is identical to Assumption 5) of Chapter

I, except that penetrators and barrier elements have reversed shooter and target roles. Thus

3 the probabilities

P(FhIDAI)

3 for h=O,... Hj and the appropriate values of . are identical to those used in Chapter I, for

each attack protocol. These probabilities are presented in Lemma 1.5 of Appendix A. (To

3 use these in context here, substitute Hj for H.) Since D and {DAt)to form a partition,

and a shooter fires zero shots at a target it does not detect, by the law of total probability

3 P(F) = PI(D) + Y P(FiiDA, P(DA,)
t

311-5
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and I
P(Fh) P (FhIDA,) P(DAJ), hl... H.

To deri'-e the probabilities P(DAt), we first detcrmine the number of targets that p can

potentially detect considering the spacing of the targets along the barrier line. Clearly, 3
ignoring edge effects, P(V) = wj/L because p's crossing point is uniformly distributed on

10,L] (Assumptions 2) and 4)). We note that (by Assumption 4)) P(D) = djP(V) = I
wjdj/L. The probabilities of the Wm (m=0 ,... ,B) can be computed by methods similar to

those used in Chapter 1, but V and Wm are, in general, not independent. The following

lemma, which is of key importance in the derivation, is proved in Appendix B.

Lemma Let Ij = LwjB/LJ and fj = <wjB/L>. Then, ignoring edge effects, 3
Ij.(1-f}

P(W IV) - (wj1)
(wi B/L)

(I +1) f.
P(W1j+IV) - (wjB/L)

P(Wm IV) = 0 for all other values of m.

(Parameter L is restricted to be > 0. If wj=0, then penetrator p cannot potentially detect any I
target, and the joint probabilities P(VWm) are zero for all m.) We also state the

probabilities of the Wm. 3
jLmma.1.2 Let Ij and fj be defined as in Lemma I.1. Then, ignoring edge

effects, 3
P(W 1 ) = 1-fj

P(Wj+I) = fJ

P(Wrm) = 0 for all other values of m.

Lemma II.2 is proved in Appendix B. The problem of edge effects is discussed in Section

D, below. The joint probabilities P(VW1I ) and P(VW1 +I ) are then

Ij (l-fj)

P(VWl) =P(WI IV) P(V) = B

I

11-6 3
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I and

P(VWlj 1 ) = IV) P(V) = (Ij +1) fjii)=P(Wlj+l
B

Suppose -ta: Vm occ-urs. Thcn hr-.c cvcri DAL inc~iis that p detects P and exactly3 1t of the m-1 other targets vulnerable to p. By Assumption 4), detections of different
vulnerable targets are independent and each occurs with probability dj. Therefore the3 number of other targets detected follows a binomial distribution with parameters n-1 and

dj, and

P(DAtIVWm) =dj(M-1 d t mid )nlt ='. M.'id tO...,-..

I Since the event VWm has positive probability only if m=Ij or Ij +1, unconditionally,
iP(DA)= P(DA L VWj ) P(VWI i ) + P(DA I VW~j +I) P(VW j+ 1.

Substituting the appropriate derived expressions and simplifying yieldsI Ij-) (IIAtl-i-

P(DA) B dj (1-dj) j

I+ (Ij+l)fJ Ij) dj t+l(1-d? I. -t t=O ..... Ij-1

B

i(Ij +1) fi ii +1
P(DAj B dj

If Ij=0, then the first formula above does not make sense. But in this case, at most

one target can be vulnerable to penetrator p. The occurrence of D implies that target P3 is
vulnerable to p, thus P is that one target and there are no other targets that p can potentially3 detect. Thus if Ij=O, DAt is the null event for i 2 1, and DAG is simply D, so P(DAO)=
wjdj/L.

3 Note also that if Ij > 0 and dj=l, P(DA1 ) will be zero for all t except Ij-1 and Ij.

This results in considerable simplification of several formulas.

5 Overall, for h > 1
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P(Fh) = P(FhIDA )P(DA

Substituting this expression into the expressions for P(K) and E(I) we obtain

.h1lt=
and

H. I.h~l t=0

E(h) I I hP(F hIDA,) P(DAt).I
h=1 t=Q

As in Chapter 1, these expressions are most easily evaluated by interchanging the order of

summation. The quantities

H.

P(KIDA)= (1-[1-k i 1) P(FhIDA)I
t h=l 1

and

E(DA) = hP(FhIDA1)

(the lower limits of summation could be zero as well as one) are exactly the same as the I
corresponding quantities of Chapter 1.1 Expressions for them (for each different attack
protocol) appear in Table A- I of Appendix A. Then 3

P(K) = P(KIDA )P(DA)
=O t t I

and

E(I) = , E(hIDA)P(DA),
t=O .

and these quantities are evaluated simply by substituting the appropriate previously derived
expressions (noting the t where P(DAt) = 0) and simplifying. Results for each protocol

are presented in Appendix B. 3
1

The formulas are the same algebraically. However, parameters wj, kj, and dj now apply to penetrators,
not barrier elements, as shooters, and will in general have different numerical values from the
corresponding Chapter I parameters, so the resultant values will differ. Also, Hj should be substituted for I

11-8 3
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2. All Penetrators and Barrier Elements

To use the results of the previous section to find the overall quantities of

ir:crest, ,we introduce new symtols for P(K), E(i), and P(1i=h), as follows. For j=l ,....n

define

qj--probability a given barrier element is killed by a given penetrator of type j.
(Ignoring edge effects, this probability is the same for all barrier elements.)

ej--expected number of shots a given penetrator of type j fires at a given barrier
element.

Ihj--probability a given penetrator of type j fires exactly h shots at a given barrier
element. (Defined for h=O,...,Hj.)

Also define:

AB--Number of barrier elements killed

E(A-B)--Expected number of barrier elements killed

S--Event that a given barrier element survives every penetrator

5r--Number of shots fired at a given barrier element, totaled over all

penetrators.

We seek expressions for E(M3), E(Y), and P(Y=y) fo: appropriate values of y. We present
the main issues of derivation for each quantity in turn.

By elementary arguments [12],

E(nB) = BP(S) = B(1-P(S)).

The event S is the intersection of the events that the given barrier element survives a given

penetrator, taken over all penetrators. By Assumptions 3) and 6), these individual survival3 events are independent. Since there are Rj penetrators of type j, for j=l,..., n,
P(S) = I ( 1 )Rj

Thus

E(AB) = B 1-I-I -qj) J
j=l

I 1-9



U
I

Similarly, Y is the total over all penetrators of the random variables Wp, the number

of shots fired at the given barrier element by penetrator p (p=l,...,R). If p is of type j, 3
E(hp) = ej, as defined above. Therefore

E y) :XRjej.j=a

In fact, by Assumptions 3) and 6), the random variables Ep, for different p are

mutually independent. In attack protocols (a), (d), and (e), each hp can assume only the 3
values zero and one, and if p is of type j

P(hp =1) =1j,

and the 01j can be different for different j. If there is only one type of penetrator,

follows a binomial distribution with parameters R (i.e., R1) and 011. If n > 1, we can use

the Poisson approximation to the binomial and say that " is approximately distributed
Poisson with mean 3

n

= 1

The above discussion applies only if attack protocol (a), (d), or (e) is used. If attack
protocol (b) or (c) is used, each lp can assume a range of values, and even though the lip 3
are independent for different p, we have not obtained the resulting distribution for Y. One

simplifying case occurs if Wj -< L/B for all penetrator types j. In this case, each penetrator 3
can potentially detect no more than one barrier element, and thus will fire all of its Hj shots
at any barrier element it detects. Thus if p is of type j, lp can assume only the values 0 or 3
Hj. If in addition there is only one type of penetrator, then Y, the number of shots fired at a
given barrier element, equals H1 multiplied by the number of penetrators that detect that

barrier element. If I1=0, this latter quantity is a binomial random variable with parameters R
(i.e., R1) and OH1 1. Therefore, if n=1, I=0, and attack protocol (b) or (c) is used,

P y=mHl) = (R HmI1 mO..,R

All of the above formulas were expressed in terms of the qj, ej, and Ohj. The

algebraic expressions derived in Subsection 1 for P(K), E(ff), and P('h=h) can be I

II-10 I
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-I substituted in and overall algebraic formulas computed. The final results are presented in

Section E; appropriate details appear in Appendix B.

D. EDGE EFFECTS

IEdge effects will occur if some barrier elements are located less than wj/ 2 away

from the edge of the barrier, for some penetrator type j--i.e., if wj > L/B. This condition is

similar to the condition in Chapter 1, Section F, but wj is now a penetrator's detectability

width. This has two consequences, which work in opposing directions. Consider a

specific barrier element 3 located less than wj/ 2 away from the barrier edge, for some j, and

consider a penetrator p of type j. The probability P(V) that p can potentially detect P is
lower than wj/L, which was used in i,,, computations in Section C. However, the total

number of barrier elements p can potentially detect assumes values lower than Ij or Ij + I if

p's "detectability width" extends beyond the barrier edge. If an attack protocol is used in3 which an attacker has a limited number of shots, if p does detect P3 there are fewer other

detectees to divert p's shots, and the probability 3 is killed increases.

I If edge effects are considered, different penetrators of the same type can still be

considered as identical (and mutually independent), but different barrier elements cannot.3 The probability qj that a specific penetrator of type j kills a specific barrier element must be

replaced by qjb, the probability that the penetrator kills barrier element b, for b=l,...,B.

Then
E(B)= [1-11 (1-qj b )Rj.

b- I~ j=1

I Similar arguments apply to the expectation and probability distribution of Y.

3 If wj < L/B, then edge effects do not occur for penetrators of type j, and the

probabilities P(VWm) are as given in Section C. The reason for this is discussed in5 Appendix B. Since the overall quantities of interest involve sums or products on j, wj must

be less than or equal to L/B for all j if edge effects are not to occur. (Unlike Chapter I, this

condition is not needed to guarantee the independence of any set of events.) The phrase

"ignoring edge effects" in the statements of the theorems in the next section merely means

that if wj < L/B for all j, the formulas are exact; if not, the formulas are valid except for edge

effects.

We note finally that although the combat processes examined in this paper

considered barrier elements spaced along a line, one could also consider a circular barrier or

3 IlI1
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screen, with barrier elements on the circumference (which is of length L). If detectability I
areas are considered as portions of the circumference, the results in both Chapters I and II

hold without edge effects regardless of the relations between the wj and L/B.

E. THE RESULTS 3
This section presents the formulas for the three main quantities of interest: E(EB),

the expected number of barrier elements killed; E(y), the expected number of shots fired at a 3
given barrier element; and the probabilities P(Y=y) that exactly y shots are fired at a given

barrier element, for appropriate values y. (The P(y=y) have been derived in general only for 3
attack protocols (a), (d), and (e).) The methods of derivation of the formulas have been

presented in Section C; proof details appear in Appendix B. Results for which we have not 3
found a closed form are expressed with cumulative binomials, when possible.

The meanings of the parameters B, R, n, L, wj, dj, Hj, and kj are given in Section

A, above. We let Ij and fj denote the integer and fractional parts, respectively, of wjB/L.
Note that Ij = 0 if, and only if, wj < L/B. It can easily be verified, however, that the 3
formulas given below for the case where Ij = 0 also hold if wj = L/B, i.e., Ij = 1 and fj = 0.

For those penetrator types j where Ij > 1, we lefine the parameters 3
0j = BIj (a-fj) dj (jl lj( -j I - -

+ I (Ij +1) fjdj (-djL. j -  for t=G,..... -1,

and I

j- B j

(Note dwi 0jt is the probability I _:,... A , d, , i S-t;on 0'% As in, Chapter I, Section G, we 3
use the following notation for binomial probabilities:

b(m ; nl,p) = n p (1 p n- m m= ... n

I
and

I
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SO, M:_<-1

m JB(m;n,p) _ _b(t; n,p), m=O,.....

I, m 2 n.

The theorems are indexed by attack protocol, reflecting dependence of the results on

the attack protocol. The expected number of penetrators killed is given by the following

m theorems.

Theorems 11.1a. b. c. d. e. Ignoring edge effects, the expected number of

m penetrators killed is given by n 
R

E(A) = B [ -I (1-qj) Rjj=l 1

where the qj are defined separately for each attack protocol (a) through (e), as follows.

- Attack protocol (a)

q = kj wj dj/L

- Attack protocol (b)

IfHj = 0, qj =0.

If H > I andl. = 0,

m qJ = [1- (1k)Hj] wJ

If Hj> 1 andlj> I

wjdj k j H.

qJ L t=0

- Attack protocol (c)

If H = 0, qj = 0.

m If H. > I andlI = 0,
mHj w

qj =[ - (1-kj)

as in protocol (b).

3 11-13
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If H _ l Iandl -> 1 I
Ij [ H1+1 H.

qj [1 -(1-kj) ( --

Attack protocol (d) 
I

IfHj 0, qj = 0.
Ifl < Hj< 1.

kj
If I H < Ij qj J - I (1-fj ) dj 1(Hj -1; Ij - ,dj)

k.

+-(Ij.+1) fjdj (Hj-1;Ij, dj)
k. I

+ -Hj(1-fj) (Hj; Ij, dj)]
+ kJB I- fj [ 1 - B (Hj; Ij + 1, dj )

if Ij 0or Hj Ij+ 1, qj =kjwjdjIL

I Attack protocol (e) I
j [1 (1-dj) (-fjdj)]

If Ij = 0, this reduces to B = d I
j kj wjdj /L.

The above results for attack protocols (b) and (c) do not, in general, have closed

forms. If the detection probability dj equals 1, however, most of the j are zero and the
formulas for qj are easily evaluated. In the implementation of these protocols in the
NAVMOD model [3], parameters wj and dj are input but the code evaluates the expression 3
for qj using wjdj and 1 instead of wj and dj.

It can be verified that if Hj is equal to 1, the formulas for qj in attack protocols (b), 3
(c), and (d) all reduce to the corresponding formulas in protocol (e).

I
I
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The expected number of shots fired at a specific barrier element is given by

Theorems 11.2a. b. c. d. e: Ignoring edge effects, the expectation E( ) of

the number of shots Y fired at a particular barrier element P3 by the penetrators is

SEy) = Rjej

j=l

where the ej are defined separately for each attack protocol, as follows.

- Attack protocol (a) ej w d , L .

- Attack protocol (b)
H Ij

I - Attack protocol (c)
Hj I.

I ej =--[I (1-dj) (1-fj dj).

- Attack protocol (d)ej = qj kj

where qj is as defined in Theorem II.ld, for the appropriate combination of Hj and Ij

values.

-Attack protocol (e)

ej = - [1 - (1-dj) (1-fjdj)].

In accordance with the arguments of Section C.2, the probability distribution
of Y, the total number of shots fired at a given barrier element, is given for the following3 cases.

- There is only one penetrator type (n=l) and attack protocol (a), (d), or (e) is used.

3 - There is only one penetrator type, attack protocol (b) or (c) is used; and w1 _< L/B.

- There are multiple penetrator types and attack protocol (a), (d), or (e) is used.

Theorems 11.3a. d. e: Let n=l. Then, ignoring edge effects, 3, the number of
shots fired at a particular barrier element, is binomially distributed with parameters R and
O11, where 011 is defined separately for attack protocols (a), (d), and (e), as follows.

3 11-15
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Attack protocol 
(a)

oil = wld 1/L U
- Attack protocol (d) I

IfH 1 =0, 01 = 0.

IfH l  landI 1 = 0

Oil = wldl/L I

IfH 1  land1 1> 1

1
il I, -1 (l-f1) d, B(Hl -1; 11 -1, d, )

B (11 +1) fl dl (H 1-1; 11 ,d 1 )

+ H1 (1-fl) [1 - B (Hl; I, d,)]
1

B H1 f, [1 -(H 1 ,1+1, d I ).

(This is identical to e1 and ql/kI.) It can be v- ,*'ied that if H1 > I, + 1, the above

formula reduces to

)1 = Wldl/L .

- Attack protocol (e)

1 1 [1 _(l-dl) (l-fId 1 ) ] I

The subscripts on 1 are not really necessary; we have kept them because 11is the same I
quantity indicated by that symbol in Section II.C, above: the probability a given penetrator

fires exactly one shot at the particular barrier element considered.

I
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Theorems 11.3b and c: Suppose that n=l and that attack protocol (b) or (c) is

used. If w, _ L/B, then

P( = mH1) = tmn LJ ~1L

and P(3=y) = 0 for all other values of y. (I.e., " /H1 is binomially distributed with

parameters R and wldl/L.)

Theorems 11.4a. d. e: Suppose that attack protocol (a), (d), or (e) is used.

Then, possibly subject to edge effects, 5r is approximately Poisson distributed with mean

n

9 J : R ie.i
j=1

where the ej are as given in Theorems II.2a, d, and e above.

(Since in attack protocols (a), (d), and (e), a shooter fires no more than one shot at any
particular target, the quantity ej, which is the expected number of shots fired at a given target

by a given shooter, is the same as the probability the shooter fires one shot at that target.)

11-17
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PROOFS OF RESULTS IN CHAPTER I

This appendix is in two parts. The first part proves seven lemmas that are used in

deriving the overall formulas. The first four were stated in Chapter I, the others provide

useful algebraic results. The lemmas involve the following issues:

Lemma 1.1--Independence condition for attack protocol (a).

Lemma 1.2--Independence condition if wj < L/B.

Lemma 1.3--Formula for Nj(x).

Lemma 1.4--Formula for P( =y), in terms of P(Fy) when wj _< L/B.

Lemma 1.5--Derivation of probabilities P(FhIDAt).

Lemma 1.6--Formulas for P(KIDAt) and E(HiI DA,)

Lemma 1.7--Formulas for sums and weighted sums of o)t and Vjt.

The second part of the appendix presents the steps in proving the theorems of

Chapter I, Section G. The main conditioning arguments have been presented in Chapter I.

Section E. Here, these will be briefly restated, with additional arguments as necessary to

complete the proofs.

Unless specifically redefined, the notation used in this appendix matches that of

Chapter I. The parameters Rj, R, B, n, L, wj, dj, kj, and H, and the attack protocols (a)

through (e) are as defined in Chapter I, Section A. We let Ij and fj denote the integer and

fractional parts, respectively, of wjB/L. The events and random variables Fh, D, DAt, K,

and 71 concerning one penetrator and one barrier element are as defined in Chapter I,
Section E.1. The events and random variables S, Sb, Cx, 5, Nj(i), Yb, and " are as

defined in Chapter I, Section E.2.
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A. THE LEMMAS I
Lemma 1.1 Consider one penetrator p, of type j. Let the events Sb, S, and Cx be

as defined in Chapter 1, Section E.2. Suppose that attack protocol (a) is used. Then, for 3
every x E [0, L]

P(SICx) = fl P(SbICx) I
b=1

PrQQf: Suppose that Nj(x) barrier elements can potentially detect the penetrator if

the penetrator crosses at point x. For now, let N denote Nj(x). By Assumption 4), the

number Fii of barrier elements that actually detect the penetrator is binomially distributed
with parameters N and dj. Since attack protocol (a) is used, ffi is also the number of shots 3
fired at penetrator p. By Assumption 7), the probability p survives, given that m shots are

fired at it, is (1-kj)m, regardless of p's crossing point. Then I
N )mN) m N-rn

P(S ICx) = (1-kj) mdj (1-d) .

Using the formula for the z-transform of the binomial1 this becomes

P(SICx ) = [1-d +dj (1-k)]N = (1-dj kj)Nj(x). I
Now consider barrier element b. Whether b can detect p depends on p's crossing I

point x. Given x, if b cannot potentially detect p, p will certainly survive b and
P(SbCx) = 1.

If b can potentially detect p, then b will actually detect p with probability dj. Since protocol

(a) is used, b will then fire one shot at p, which will be lethal with probability kj. Thus if b

can potentially detect a penetrator crossing at x i
P(Sb1Cx) = 1 - djkj

Since given Cx, Nj(x) penetrators can potentially detect p, I

z b(m;n,p) = (1-p+pz) 1
m=O

where the notation of Chapter I, Section G for binomial probabilities has been used.
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B N.(x)
Br P(SbIC, ) = (1-djkj)

b=1

which equals the previously derived formula for P(SICx).

Lgmma.2 If penetrator p is of type j and wj < L/B, then the events Sb that p

survives barrier elements b, for b=l,...,B, are mutually independent given the crossing

point x of p.

Proof: Let the events S and Cx be as defined in Chapter 1, Section E.2. By

Lemma 1.3, below, the number of barrier elements that can potentially detect p is Ij with

probability 1 - fj and Ij + 1 with probability fj. If wj < 1/B, either Ij = 0 or Ij = 1 and fj =

0, so that with probability one p is vulnerable to at most one barrier element. If x is such

that p is vulnerable to no barrier element, then p survives each barrier element, so

B
P(SIC x ) = 1 = I P(SbICx).

b=1

If x is such that p is vulnerable to one barrier element 0, then p survives overall if and only

if it survives 3. so P(SpICx) = P(SICx). For b p 3, p is not vulnerable to barrier element

b, thus P(SblCx) = 1. Thus

B
P(SICx ) = I P(SbI Cx)

b=1

as stated.

L .3 Let the random variable 3Z be the crossing point of some specific

penetrator p of type j. Let Nj(R) be the number of barrier elements that can potentially

detect that penetrator. Then, ignoring edge effects,

Ni() = J

I w.p. f.J J1

where 1. = L and f. - - I.. Alternatively stated, the set of x e [0,L] wherewhr I.= adfi L J"
JJ

Nj(x) = Ij has length (1-fj)L, and the set of x e [0,L] where Nj(x) = Ij + 1 has length fjL.

Proof: Let the barrier line (of length L, by Assumption 1)) be labeled with

coordinates 0 through L. The number of barrier elements, B, is assumed to be an integer >

1. By the positioning described in Assumption 1), the coordinate of barrier element b is

A-3
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L 1

xb = L (b- 2) b=l .... B.

By Assumption 2), x is distributed uniformly on [0,L]. For any specific crossing point

x E [0,L] of penetrator p, by Assumption 4), barrier element b will detect penetrator p if

and only if

Ixb -_x 1 <wj/2 I

SubstitutingL (b 1) for xb, denoting wj/L by 0, and performing the algebra yields the

equivalent condition

2 L 2-- 2 L 2 I
It is clear that Nj(x) is the cardinality of the set of b that satisfy the above condition. We I
ignore edge effects by letting b assume any integer values, possibly nonpositive or
exceeding B. (That is, p crosses in the middle of an infinitely long barrier.) Denote the
left-hand side of the above expression by b0 (x), i.e., for each x C [0,L] let

1 x 0

bD (bT = I + B ( - - .0

Denote (Il-B0)/2 by a0 . Then, since x - U[O,L], b0 ('R) is a random variable uniformly
distributed on [a0 , a0 +BJ, and is integer with probability zero. The desired quantity Nj(R)

is the number of integer points in the interval

[bo(R) ,b0 x) +B0]. I
To determine this number, let us simplify the notation. Let b0 (i) be denoted by . For any

noninteger a and any nonnegative y, the integer points in the interval [a, a+y] are LaJ +1,

La] + 2,..., up to LaJ + k, where k is the greatest integer such that

La] + k < a + y . I

Rearranging, we see that k, which is the number of integer points in the interval, equals

L (a+y - LaJ)] , J

I
I
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which equals Ly] + [<a> + <y>j

3 Since fractional parts <a> and <y> are both in the interval [0,1),

o if <a> < 1-<y>IL <a> + <y> J = kl if<a> 1-<y>

Now let d be a random variable distributed uniformly on [aO, a0 + B]. Remember that B is

the number of barrier elements, a positive integer; y is a nonnegative constant. Define the

random variable LyJ + L <a> + <y> J .

I The interval [aO, ao, + B] is composed of B unit intervals. As 5 ranges over the interval

[aO, ao + 1), <a> assumes every value between 0 and 1 (except for 1 itself). The same is

true as d ranges over

[a0 + 1, a0 +2), [a0 +2, a0 +3),... [a+ (B-I), a0 +B)

Therefore <a> is uniformly distributed on [0,1] and is thus less than 1 - <y> with

probability I - <y>. Then the distribution of k is

Ly] w.p. 1 -<y>

5 LyJ +1 w.p. <y>.

But as it has been defined, k is in fact Nj(x). Let y = BO = wjB/L. Substituting these in

3 the above expression yields the statement of the lemma.

We note that if wj < L/B, then for every x E [0,L] the condition

I + B (-x - k) < b < 1 + B(A- - + B0
2 L 2 2 L 2

for barrier elements b that can potentially detect a penetrator crossing at x strictly includes at

most one integer value of b, and this value is not negative or strictly greater than B. This is

true because wj <_ L/B if and only if BO < 1. The interval in which b can lie, therefore,
has width < 1. Its left endpoint is greater than or equal to Bx/L, which is never negative
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for x e [O,L]. Similarly, the right endpoint is _ Bx/L + 1, so the interval includes the

integer point B + 1 only if x = L, which happens with probability zero. Thus, if wj < I
L/B, the edge effect of "detection" of a penetrator by mythical barrier elements will not

occur. 3
Lemma 1.4 Suppose wi < L/B for all i = 1 ...... n. Then for all attack protocols

Ifwj < L/B

P(Y=O) = 1 - fj + f P(Fo)

P(y=y) = fjP(Fy

Ifw = L/B

P(.7=y) = P(Fy), y=O,....H,

where in attack protocols (a) and (e) H is taken to be 1. 1
Proof. Let Yb be the number of shots fired at the given penetrator p (of type j) by

barrier element b, so , the total number of shots fired at p, is

B -
b=l

Fy is the event that a given barrier element f3 fires exactly y shots at a given penetrator p (of 3
type j). The probabilities P(Fy) are calculated assuming that [0 can potentially detect p. Let
N denote the number of barrier elements that can potentially detect p. By Lemma 1.3, 3

f1 w.p. I-f I
= I +1 w.p. f,

and if wj < L/B, edge effects are not a problem. A barrier element that cannot potentially
detect p fires zero shots at p. Thus P(Y=O I N=O) = 1 and for y=l,2,..., P( =y I N=O) = 0.

Also P( =y I N=1) is simply P(Fy), for y=0,l,2,..., because if N = 1, the number of I
shots p receives overall is simply the number of shots p receives from the one barrier
element that can potentially detect p. 3

A
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Always,

AP(wa=y) 
= P(Y=y I&=Ij )(1-f ) + P(T=y IN=Ij +1) fj.

If wj < L/B, Ij = 0, and if wj = L/B, Ij = 1 and fj = 0. Making the appropriate

substitutions for the indicated conditional probabilities in the above equation yields the

statements in the lemma. (Recall from Chapter I, Section E that P(Fy) = 0 for y > H.)

I Lemma 1.5 Consider one attacker, barrier element 0, and one target, penetrator

p. Assume that 03 has detected p and exactly i other targets. Then the probability

i P(FhDA) that P fires exactly h shots at p is given by the following formulas, for each

attack protocol in turn (t can be any nonnegative integer).

S- Attack protocol (a)

P(FIIDAL) 1

i P(FhIDAt) = 0 for allotherh.

S- Attack protocol (b)
P(FhIDAt) h 0i-) (1- 1-L)Hh h=0 ...... H.

i)t+l 1+1

- Attack protocol (c) Let J denote the integer part and 71 the fractional part of- Then

I P(FjIDAt) = 1 -

5 P(F3+1IDA,) =

P(FhI DA,) = 0 for all other h.

- Attack protocol (d).

P(F 0 IDA ) = 1 - min(1, H

P(F!IDA )= in(1, H)

I P(FhIDA ) = 0 h_>2.

I
i
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Attack protocol (e)

P(F IDA)=10 1+1

P(F 1 IDA ) t41

P(Fh IDA) = 0, h _ 2. 3
hI

Proo: In all cases, the results follow from the statement of the attack protocols in
Assumption 5) of the problem statement in Chapter I, Section A, where the total number of I
targets P detects is i + 1. The formulas for attack protocols (a) and (e) are self-

explanatory. The formula for (b) is a precise statement of the attack protocol. In protocol 3
(c), each target will receive J or J + 1 shots, and J shots at each target uses up J(t+ I)
shots, so there are H - J(i+l) shots left over, to be distributed among the t + 1 targets

such that no target gets more than one of the additional shots. The probability that a target
does get one of the additional shots can be seen to be

_ I
H -J(t+l _ H

t+ 1+ j~

For attack protocol (d), if H _> i + 1, then each target will receive one shot, i.e.,
P(Fl1 DAt) = 1. If H < i + 1, there are H shots to be apportioned among i + 1 targets 3
such that no target gets more than one shot. The probability that 3 gets one of the shots is

simply the number of subsets of the i + 1 targets of size H that contain 13, divided by the

total number of subsets of size H of the t + 1 targets, i.e.,

P(FJIDA ) = H-]/tH1  I

which simplifies to H Combining the two results, we obtain, as stated 3
P(F 1I IDA) = min (1, H) .

Lemma 1.6 Let the probabilities P(Fh I DAt) be as given in Lemma 1.5. Then the

quantities 3

A
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* H

P(KIDA) X (l-[l-kjhP(Fl IDA,)

and 
h=O

H3 E(fiDA) = I hP(Fh IDA )

h--O

are as given in Table A-1. (Note that i can b . any non-negative integer. In the3 homogeneous case, substitute k for kj.)

Proof: The only issue is the algebra, which is straightforward except for the evaluation of
P(KIDAI) in attack protocol (b). There we use the formula for the z-transform of the

binomial

In
I zmb (m ; n, p) = (1-p+pz)

n

In protocol (c), note that + < H this spi

E(Ff IDA ). The formulas for E(h' IDA) are identical for attack protocols (b) and (c). This

3 is reasonable given the nature of the protocols. In (b), an attacker scatters its H shots
randomly over the t + 1 targets it has detected; in (c) it distributes the shots as evenly as

possible, but in either case there is an average of - shots per detected target. Since the

I E(li I DA ) are the same for all t, the overall Eh) and E(y) are the same for protocols (b)

and (c).

I
I
I
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Table A-i. FORMULAS FOR P(KIDAI) AND E( IDA t)

Attack Protocol P(KIDAt) E(hIIDAt)

(a) kj1

k. H I
(b) 1 - ( )H H

Htl+

(c) (1 -<H > kj) H

Jt+1

(d) kj min (H l 1) min (-H- 1)

(e) k.

t+l 1+1

Lemma 1.7 Let the notation b, B, p, and P for binomial and Poisson probabilities be as

in Chapter I, Section G. Let Rj, R, d, dj, w, wj, and L be as in Chapter I, Section A;

assume that they obey the restrictions in Chapter I, Section B. As in Chapter I, Section G,
let p = dw/L, and define

and
-a.

jt = die J xt / t , t=0,1,2,...,

where, for the purposes of this lemma, the ocj are some positive constants. (The index j is
redundant here.) Then for integers tI and 12 such that 0 < tl < 12:

12

a) 1 t) = d[B(t 2 ; R-l,p) - IB(t -l;R-l,p)] ,t=tl

A-10
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t21 L

b)- - [B(t 2 +1;R,p) - !B(tl;R,p)],t~t t~ t wR

1=t11

d) d.
dW . - [P(12 +1;ctj) -?(l;(2j) ].

1=11  t+l j a0

Proof: It is evident that cot = db(t ; R-l,p) and fjt = djp(t;ocj) so formulas a)

I and c) follow immediately from the definitions of B(m;n,p) and IP(m; 1) in Chapter 1,

Section G. Note also that for 0 < 1 < R - 1

I 1 (R-1) !R-1-=+ d P, (l-p)

Multiplying and dividing the right-hand side by Rp and simplifying yields
i! 1 d

_ = - ~b(t+l; R,p)-- + 1 R p

3- and thus

12 1,2 +1

I I W I - b(m;R,p)i =R 1  t+1 M=1+1R

d [B('2 i+1;R,p) - B(i1 ;R,p)].

Substituting wd/L for p yields expression b). If 12 > R, B (t2+1;R,p) remains 1, and thus3 expression b) holds for all values of tl and 12.

Similarly
_-"-cc d.

Pjt =d.e Jt / (1+1)! a iP(t+l;)

i~~Perfor m i,g the "7;. -,- ,d, ... .,. yields expression d).

i
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B. PROOFS OF THEOREMS IN CHAPTER I, SECTION G

This section presents outlines for proofs of the theorems stated in Chapter I,

Section G. The main conditioning arguments have been derived in Chapter I, Section E.

Here, we briefly restate them as appropriate; see Section E for justifications. Actual

algebraic simplications are not performed, but references to lemmas are made where

appropriate. Unless specifically redefined, all symbols for parameters, events, random

variables, and so forth, are as in Chapter I.

Homogeneous (n=l) and heterogeneous (n>l) cases are treated together: the

derivations are very similar. In the homogeneous case, suppress the subscripts j on the
parameters, and consider "o as being zero for i>R.

In the heterogeneous case where some 0:j are zero, some results have a form

different from the general equations. In the proofs of the theorems we assume caj >0; in

Section 4, below, we discuss the case oxj=0.

Independence conditions, Poisson approximations, and edg; offects are not
mentioned in this appendix; they affect the final results in the ways discussed in Chapter I,

Sections D, E, and F.

For the rest of this appendix, "Section" refers to the indicated section in Chapter I.

1. Theorems 1.1 and 1.2: Expected Numbers of Penetrators of Type j

Killed

The derivation starts by evaluating the probability P(K) (that a specific barrier

element kills a specific penetrator which it can potentially detect), using the formula from

Section E. 1 (page 19)

H 0
P (K) = P(KIFh) P(Fh IDAt ) P(DAt).

h=I t=0

The P(Fh IDAt) are given by Lemma 1.5, P(K I Fh) is simply 1-(1-kj)h, and the P(DAt) 3
are the cot or (approximately) 4fjt defined in Section G.1. To evaluate P(K), first

interchange the order of summation. The sum on h

A
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H
I P(K I Fh) P(Fh I DAt)

h=1
results in the P(K I DA1 ) given in Lemma 1.6. Then

P(K) = Z P(KIDA )P(DA ).
1. 1,

U=0

The results of Lemma 1.7 can be used to evaluate this sum for attack protocols (a), (d), and

(e). In (d), the sum must be broken into two parts: where P(KIDA) is kj or t-H

3 _respectively. The sum for protocol (b) does not appear to have a closed form. In

evaluaLing the sum for (c), we note that for i>_H, the integer and fractional parts of HI i+1

HI become zero and H-, and thus the P(KIDAt) of Table A-I becomes

P(K(DA) kHI 1+1
The tail sum

H t--H

can be evaluated using Lemma 1.7 (noting that in the homogeneous case P(DA1 ) = 0 for

i _R, and in the heterogeneous case, letting P(-;g) equal 1 for any .i). The rest of the sum

3 H-1
I P(KIDA )P(DA

-- t~=0 .

m for protocol (c) does not seem to have a closed form.

The resultant P(K) for protocols (b), (c), and (e) are stated in Theorems 1. 1 and 1.2;

for protocol (a), P(K) = djkj. To derive the overall E(AR.), we first note that
lJ

E(iRj) = Rj P(S)

3 A-13
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(Reference [12]), and also

P(S) = 1-P(S)
L 1

P(S) = f P(S ICx ) dx
0

B

P(S I C x) - 11P(Sb 1C,) if the independence condition holds
Xb=l

Nj(x)
= [1-P(K) ]

Using Lemma 1.3, the integration on x yields
I. 1I+ 1

P(S) = [1-P(K)]J (i-fj) + [1-P(K)J f

Ij
= [1-P(K)] [I-f P(K)]

and the resultant formula for E(ASkj) is as displayed in Theorems 1.1 and 1.2.

2. Theorems 1.3 and 1.4: The Expected Number of Shots Fired at a Given
Penetrator

First, consider one specific penetrator (of type j) and find the expected value of the

number of shots Ti fired at the penetrator by a given barrier element that can potentially

detect it. By arguments in Section E 1,
H o

E(h) = hP(FhIDA )P(DA )
h=l It=0The P(FIDAt) are given by Lemma 1.5; the P(DA t ) are mt or Wjt for the homogeneous and

heterogeneous cases, respectively. Interchange the order of summation; the intermediate

sums
H

E( I DA ) = I hP(FhIDAt)
t h=1

are derived in Lemma 1.6. Examining these results, it is evident that for all attack protocols

the sums

E(F) = , E(hIDA,)P(DA,)
t=0

can be evaluated using Lemma 1.7. The results are givwn in Table A-2.
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Table A-2. EXPRESSIONS FOR E(h)

Attack Protocol Homogeneous Case Heterogeneous Case

5 (a) d dj

Hd.
(b)LH [1_ wd R H (1-e -)
(b) R L ) Ij

-- (c) LH ( d )R Hdj
wR [1-6-

i (d) If H-R, E(h)d

if H<. R-1
E(hf) = d(H-1 ;R-l,p) dj P(H-1;,xj )

+-R[ 1-B(H;Rp) ] Hdj
wR d

where p=wd/L. + a

(e) wRL [1 (1  )R a

I
I

i
i

i
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To compute E(j), the expected number of shots fired at a given penetrator, p, we

note that I
B

E( ) Y. E E(y)
b=1

where Yb is the expected number of shots fired at the penetrator by barrier element b. If b

can potentially detect p, Yb has the same distribution as Ti; if b cannot potentially detect p, !

Yb is zero with certainty. Given that p crosses at point x, Nj(x) barrier elements can

potentially detect p. Thus 5
B

E(y"lC) = E )

Nj N(x) E() +(B-N (x) 0

Integrating on x and using Lemma 1.3,

L 5 ~11

E(fy) = f E(-IC)- , dx
0

= (I1-fj )Ij E Q' + fj (lj +1) Ef)I

Simplifying and recalling that (by definition) Ij +fj = wjB/L,

w.B
E(y) ___ E(h).

L
In the homogeneous case, the wj and L will cancel terms from E(i). The final results for 3
E(y) are as stated in Theorems 1.3 and 1.4.

3. Theorems 1.5 and 1.6: The Probability Distribution of the Number of I
Shots Fired at a Given Penetrator

The proof of Theorems I.5a and 1.6a (when attack protocol (a) is used) has I
essentially been given in Section E.2. We note here that Lemma 1.3 is used in integrating

over x. The algebraic result for P(Y=y) in that section is the same as the result stated in 3
Theorem 1.6a. Note that if I --0, P(Y=O) = 1-f. dj and P(y) = f. dj. This makes sense: a

penetrator receives one shot if and only if it is detectable by some attacker (which occurs I
with probability fj) and that attacker then actually detects the penetrator.

A-16 3
I



I
I

For the other attack protocols, we assume that wj < L/B for all j=l,...,n. Lemma
1.4 reduces the problem to finding the probability P(Fy) that a specific barrier element 3
fires exactly y shots at a specific penetrator p that the barrier element can potentially detect.

The quantity y can range from zero through H, the input number of shots per shooter. In

attack protocol (e), set H=1. The formula in Section E.1

P (Fh) P(Fh 1D) P(D) + I P (F I DA I)P(DA)
t=0tI

yields

P(F°) = 1-dj + P(F 0 IDA)P(DA )
1=0

* and

P(F = P (FIDAt )P(DA t), y=l...H
1=0

using y rather than h as an index. The P(Fy IDA,) are given in Lemma 1.5; the P(DAt) are
the Cot or Vjt defined in Section G.1. Finding the P(Fy) then becomes a matter of

evaluating the indicated sums above. Looking at the Lemma 1.5 results, we see that the
results of Lemma 1.7 can be applied in a straightforward manner to attack protocols (d) and

(e) for the case y=l. Since in these protocols, a given barrier element will never fire more
than one shot at a given penetrator, P(FO) = 1-P(F1 ). The results are as stated in Theorems

1.5, and 1.6 d and e. The formulas for attack protocol (b) seem to be impossible to
simplify.

The interesting case is attack protocol (c). From now on we use h rather than y as

the number of shots fired. From Lemma 1.5,

1-<-> ifh = L+ljJ 1+1 A +I P(Fh DA) = H ifh = H + 1

0 for all other h.
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To evaluate

P(FhIDA) P(DA
t=0 1

for given h, we must determine which i yield nonzero P(FhIDAt). We define the following

two series of sets, indexed by h=O,...,H, where t can assume only nonnegative integer

values. Let {

.,(h) = {t L h+- }.

For a fixed nonnegative integer h, h = tH+ (i.e., i e L 1 (h)) if and only if

H I
h ! H < h+1t+1

Rearranging, if h l, this is equivalent to 1
H -1<t<H-

h+l -1 h

Similarly, it can be shown that if h>2, then h - +1, i.e., i.e L2 (h), if and only if

H H
h--1< t _ -1

Therefore, for h>2,

Ll(h) = {hH < I <

h+1 hi

L2 (h) = _1< l- H-1 } . 5
The cases h--0 and h=l must be treated specially. Note that H =0 if and only

if H<I+ I. Throughout, we are assuming that H is a positive integer. Thus L -i =0

if and only if t> l, and !

A-18 3
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By inspection, L 2(0) is the empty set, and L 2 (I)=LI(O); LI(i) can be found using the

3 general formula.

It is evident that for any given h, LI(h) and L2 (h) are disjoint, and that for hlh2,

LI(h 1 ) and LI(h 2) are disjoint, as are L 2 (h1 ) and L 2 (h2). Also, L 2(h+1) = Ll(h) for

h=O,...,H-1. Some of the L1 (h) and L2 (h) may be empty.

3 We can find integer bounds on the i. Let k be any integer and x any real number
(possibly integer). It is clear that k-<x if and only if k 5 LxJ, and it can be easily shown

I (treating the cases for integer and noninteger x separately) that

U x < k if and only ifLxi + 1 5 k
Therefore the sets Li(h) become

5 LI(0) = { H, H+I, H+2 ....

L2 (0) =

L, () = t I L 2n -1

3 -L2 (1) = H, H+I, H+2, ... }

and if H >2,

IL,(h) = I ih+1 5<5[Hj- }

1 L1 ~(h) = i±Jh l _I }

I
I
I

I
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We can thus restate the conditions on P(FhIDAt) as follows:

1-<--H-> ift I Lj(h)

P(FhIDA >= H iftr L,2(h)

0 otherwise

N o te th at H

[1Hl h for IE L (h)
and

L1=h-i for IE L (h). 2
Thus the sum

005
I P(F h IDA ) P(DA )

t. 1

L0O

used in the computation of the P(Fh) becomes

(h+1 _ H P(DA ) + (H -[h-11) P(DA).
I E L(h) t+1 t I E L 2 (h) t+1 1

Since P(DAt) is COt or Vjj, we can evaluate this sum using Lemma 1.7, with the appropriate

integcr limits for L(h) and L2(h) used as limits of summation. The set Li(h) is empty if 3
the corresponding expression in Lemma 1.7 is negative, so we use the positive parts of

such expressions. The formulas in Theorems 1.5c and 1.6c follow immediately. 5
4. The Heterogeneous Case Where (xj=O

When the Poisson approximation to the binomial is used to determine the probabili- I
ties P(DAt), cj, which is defined by

A-20



wi di + n wi diU~j =- L "(Rj-1) + .I L Ri'

=1 L
i~j

represents the mean number of penetrators, other than the specific one of type j under
consideration, that a given barrier element can detect. If aj=O, then for i#j either there are3 no penetrators of type i present or penetrators of type i cannot be detected (or both), and

there is only the one specific penetrator of type j or penetrators of type j cannot be detected

(or both).

Formally,

P(DA )=d. t=,1,2

If ctj=O, P(DAo)=dj (which equals P(D) ) and P(DAL)=O for all til. The general formulas
of Chapter I still hold; the appropriate P(FhIDA t ) can be substituted in and the results

follow immediately.
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PROOFS OF RESULTS IN CHAPTER II

Appendix B is organized similarly to Appendix A. The first part proves three

lemmas used in the derivations. Lemmas 11.1 and 11.2, stated in Chapter II, Section C,

concern the distribution of the events Wm. Lemma 11.3 derives formulas for certain sums

and weighted sums of the Ojt (i.e., P(DAt) ). The second part of the appendix provides,

for each theorem of Chapter II, Section E, proof details to complete the derivation steps

outlined in Chapter II.

Unless specifically redefined, notation for all events, random variables, parameters,

and so forth, is identical to that used in Chapter II.

A. THE LEMMAS

Lemna.11L Let Ij be the integer part and fj the fractional part of wjB/L. Let the

events V and Wm be as defined in Chapter II. Then, ignoring edge effects,
=Ij (1-fj)

P0W1 IV) -i
j (wj B/L)

P(Wi.+ I V) -

i (wj B/L)

P(Wm I V) = 0 for all other m.

Proof: Let the specific barrier element under consideration be denoted as barrier
element 3 and the specific penetrator (of type j) as penetrator p. Note that 3 is an integer

between one and B. Barrier element 3's position on the barrier line is, by Assumption 1)

x L ( 1I)Pl =B 2

Let R be the crossing point of penetrator p. By Assumption 4), if V occurs, x must lie

within wj/2 of xp. We ignore edge effects by assuming that the distances of x0 from the

edges of the barrier (points 0 and L) are at least wj/2. (If wj < L/B, this can easily be

demonstrated.) Therefore, the interval of width wj centered on point xp does not overlap

the edge of the barrier. The conditional distribution of 5 given V is therefore uniform on

B-1
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[xp-wj/2, xp+w/2 ]. We are interested in the total number of barrier elements (including

03) that p can potentially detect, given V. This depends on the specific value x of p's

crossing point. Let Nj(x) be this number of barrier elements. Nj(x) is the cardinality of the

set 3
b I I xxb-x 1 :< wj/2}

where I
L (b1 xb = -(b--) ,
B 2I

is, by Assumption 1), the location of barrier element b. In reality b can asume only integer

values between one and B, inclusive, but we ignore edge effects by letting b assume any 3
integer value. For any given x, the condition

1Xb-XI < wj/ 3
is algebraically equivalent to

2 L+B - b 1 + B + )

Let us denote the left endpont of this interval by bo(x); the right endpoint is then bo(x) +

(wjB/L). If bo(x) is not an integer (and given that 5 is uniform, b0 (- will be integer 3
with probability zero), then Nj(x), the number of integer points b in the interval

[b0 (x), b0 (x) + wjB/L

can be shown by the same methods used in the proof of Lemma 1.3 to be U
Nj(x) =Ij + L<bo (x)> + fjj

It is clear that I

>0 if<bO (x)> < 1-fj 3
L<bo(x)> + fjj= if <bO (x)> _> 1-fj.

I
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Thus, the random variable Nj (x) will assume only the values Ij or Ij +1, and will equal Ij+l

if and only if <b0(x-) > > 1-f. (Wm occurs if and only if Nj(x)= m.) We derive the

I probability of this event.

Given V, the crossing point R is uniformly distributed on [x -Wj /2, xo+wj/]
Thus, b0(R)  I + B(-- -2L) is uniformly distributed on

I B 1 B

I _2 + L ,x 2 + L x

3 Substituting in g-(13j) for x and simplifying, this nterval becomes

S[~-L" ,3].

I Recall that 13 is a positive integer. The above interval is the disjoint union of the sequence

I of intervals (w B/L), -

(13 - Ij, 3 - (Ij - 1)]
( - (Ij - 1), 13 - (Ij - 2)]

* (13-1,13]."

The first interval has length fj, the others have length unity.

Let the random variable ' be defined as the fractional part of bo(x), i.e.,
I =<b 0C-) >.

I
I
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We wish to determine P(2 1 - fj

If b0x ) lies in one of the Ij unit intervals (which happens with probability Ij/(Ij + fj ) ), 2

will be uniformly distributed on [0,1] and 3
P(2 1 - fj) = fj

If b0 (x) lies in the interval [P3-Bwj/L, f3-Ij] (which happens with probability fji(Ij + fj)I

then 2, the fractional part of b0 (i), will certainly be at least I-fj. Therefore, 5
I. fj

P(Z _> 1-fj) - fj f +  --
I.+f. i +fi

=fj (Ij+l1) -- fj(Ij +l)I

'J + fj (wj B/L)

By our previous reasoning, this is the probability that Nj Cx) = ij +1, and thus I

P(Nj = Ij) = 1 - fj( l _ I+(1-f 
(wj B/L) (wj B/L)

which is the content of the lemma.

Lemma 11.2. Let Ij, fj, and Wm be as defined in Chapter II (and in Lemma I1.1). I

Then, ignoring edge effects:

P(WI. ) = 1-fj.

P(WI 1  ) fj

P(W m ) = 0 for all other m. I

Proof. Again, call the specific penetrator under consideration penetrator p,

assumed to be of type j. By Assumption 1), barrier element b is positioned at

I
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I
L 1
xb = (b

and by Assumption 2), p's crossing point 4Z is uniformly distributed on [0,L]. By

Assumption 4), for any given x, Nj(x), the number of barrier elements that p can

i potentially detect, is the cardinality of the set
W.

{b I I xb-xl <) 2

We ignore edge effects by considering any integer b, even though b can, in fact, only be

i between l and B. If wj < L/B it is easily shown that for any x E [0,L], the above set will

contain no integer points b outside of [1,B]. Exactly as in the proof of Lemma 11.1, the

condition I xb -x I is algebraically equivalent to
i Bw.

b0 (x) < b < b0 (x) + L

i where

1 B wjb0 (x) = - + -(x - )
2 L 2

I Also, as in Lemma 11.1, the number of integer points b in [bo(x), bo(x) + Bwj /L] is Ij+l

3 if and only if <bO(x)> -> 1 - fj. Now, however, R is uniformly distributed on [0,L] (rather

than [x3 - wj /2, xp + wj / 21 ) and thus b0 (x-) is uniformly distributed on

1  Bw I I1  Bwj)+B]

2 L 2 L

Since B is a positive integer, this interval is composed of B intervals of length 1. As b0 ()

i ranges over this interval, the fractional part of b0 (5Z) assumes in turn every value between 0

and 1, taking on each value B times. Thus, <b 0 (R) > is uniformly distributed on [0,11 and

I
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P(<bo(R)> > 1-fi) = fj

But by previous reasoning, this is the probability that p can potentially detect Ij +1 barrier I
elements. 3

Lemma 11.3. Let I and fj be as in Lemmas 11.1 and 11.2. As in Chapter II,

Section E, let the probabilities P(DAt) be denoted by Oit, where I

= 1 ) d I 1 ) d (1--dj)
IOtt .-i

+ - (1. +l)f dj 'j dt (1-dj) for t=0 ..... I-

and

d jl= (Ij+l) fj dj .

Then I
a) For O_<tl12:5Ij-1 3

12 (1-f ) dj
_,N-'[ - [ ( 2I j - l , dj  - B(tI - 1 - , dj ) ]

t=t t B Id

(lj +l) fj d
+ (j 1)f B [ (12; IJ' dJ) - (t-1; Ij' dJ) ]

b) For0t-O!jt 2<Ij-1

12 10. - I (1-f.) [B(t +1;i ,d.) 2B(t.Ij,d. )] I

+ If. [ B(t+ 1;+1 ,dj)-!B(1 ;14 1,d). I

I
I
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c) ForO <01  <IjUIj Ij.(1-f.) d

E. - [1-2(t1 -1; Ij-1 dj)]I t~t 1 jt B

+ j 1iBt-
+ ) [1-B(t - 1; Idj)

U d) ForO t l Ij

J 1 = 1 j, d
t=l +1 t B

+ If [1-2(t I.+1, d.)],
B i i' J

where the notation for binomial probabilities is as in Chapter 1, Section G.

f f. Fo37 simplicity in notation we suppress the subscript j on dj, fj, and Ij. LetI1
a, = 1 (1-f) d

U and

a2 = 1(I+l) fd

Note that for . =0....I-1

ajn= a, b(i ;-1, d) + a2 b(t;I,d)

and

0j I = a2 b(0;1, d)

B-7
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Also, for t = 0...I- 1

I b(t;I-l,d) 1(1-d)

I I) ! +I( d
I (I I dl+ l (l-d)I[t+l]
Id (I-[t +1])! (t+l) I
I b(t+l;I,d)

Id
1 1

Thus, L a1 b(t;I-l,d) = l-f) b(1+1; I,d)

For t = 0,...,lI
I - b (t;I,d) - I I! dt (l-d)

(I+l)d ([1+1] - [t+l] )!(t+l)!

1 b(t+1;I+1,d)
(I+1)d

Thus,-L a2 b(tI,d) =-fb(i+1;I+1,d)

Thus, for0 <11 < 12 < lj-1

S0 = E[alb(t;I-ld) + a2b(I;Id)]

and

2 2 I
0 (1-f)b(t+l; I,d) + -Ltb(i+l; I+1,d).

t it 1 B= L =tLI t= tlI 
I

Formulas a) and b) follow forthwith from the definition of the cumulative binomial. 3
Assume that 1i 1 I-1. Then

O t a, b(i; I-ld) + a2 b(t; Id)

t= 1 t= 1 t=tl

I
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and

t__t t~ jt --t -(1-4) b(t+l1; I,d)

j If b(t+1; I+,d)
+IB
I=t
1

Formulas c) and d) follow forthwith.

Iftl = I, th-n

I
0. = a 2 0 = a2b(I;I,d)

If tl = I is substituted in formula c), the first term becomes zero, and the second term is

a2 [1- B(I-1; I,d)] = a2 b(I; 1,d)

In formula d), substituting I for iI yields

0 + lf[1-B(1;1+1, d)],
B

which equals
1
- fb(I+1; 1+1, d),

or

1~ e.I

1+1 j,

Thus formulas c) and d) are true for all t, between 0 and I, inclusive.

B. PROOF DETAILS OF THEOREMS

The discussion in Section C of Chapter II has presented the overall steps in the

derivations of the desired quantities. First, quantities qj, ej, and Ohj are derived for one

penetrator and one barrier element. These are then combined as explained in Chapter II,

Section C.2. As derived in Section C. 1, the formulas for qj, ej, and Phj are
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Ij i P(KI)P(FhIDAOP(DAL)I

h--O t=0

Ij
I . I

= K K IE( )AP(DA t)

Ooj = 1- L +2 P(FoIDA) .DAt)3t=0

and

j , P(FhDA)P(DA ), h = j

I I

The P(FhIDAt) are given by Lemma 1.5 in Appendix A, the P(DAt) are simply the it of

Lemma 11.3, and the P(KIDA1 ) and E(hIDA) are derived in Lemma 1.6. Examining these
quantities, we see that most of the P(KIDA), E(IhIDAt), and P(Fh!DA) are either constants
with respect to t or involve a denominator of t+l. Lemma 11.3 can then be used to evaluate
the above indicated sums. In attack protocols (b) and (c), we have not been able to derive
closed forms for qj and Ch, except as noted in Theorems I1.3b and c.

The interesting case is attack protocol (d), where P(FIDAt) = E( iDA) = I

H H .

j 1), and P(KIDAt) . H A

+1 '
me.=£ m inJ1J t= 0 in

I
B-a

I



we first note that the minimum is less than 1 if and only if tHj. If Hj>_Ij+I, for all values

of 1 with positive 0 jL, the EhiDAt) term will equal 1. Lemma 11.3 formula c) then yields

(treating B(-1;n,p) = 0)I H.

e. = .. I (1-f.)d. + (I.+l)f.d.1
St=0 jt B I w.B J

B1 d. i

w.d.
_JJ

L
If Hj<_ Ij, the formula for ej becomes

H.-I I

Iej = 0jr +~ ule+ j 0
=0 t=Hj

These sums can be evaluated by formulas a) and d) of Lemma 11.3, respectively. When

multiplied by kj, ej becomes qj, which is presented in the statement of Theorem II. ld.
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